История физико-химических свойств Zr
Чистый цирконий - внешне похожий на сталь, но более прочный металл, обладающий высокой пластичностью. Одно из важных свойств циркония - его исключительная стойкость ко многим агрессивным средам. По антикоррозийным качествам цирконий превосходит такие стойкие металлы, как ниобий и титан. Нержавеющая сталь теряет в пятипроцентной соляной кислоте при 60°С примерно 2,6 миллиметра в год, титан - около 1 миллиметра , а цирконий - в тысячу раз меньше. Особенно велико сопротивление циркония действию щелочей; в этом отношении ему уступает даже тантал, который по праву снискал себе репутацию выдающегося борца с химической коррозией. Лишь цирконий может позволить себе длительное "купание" в щелочах, содержащих аммиак, - весьма агрессивных средах, противопоказанных всем без исключения другим металлам. После того как ученые заметили, что добавки циркония к стали значительно улучшают многие ее свойства, цирконий был возведен в ранг ценного легирующего элемента. Деятельность циркония на этом поприще многогранна: он повышает твердость и прочность стали, улучшает ее обрабатываемость, прокаливаемость, свариваемость, благоприятно влияет на жидкотекучесть стали, измельчает содержащиеся в ней сульфиды, делает структуру металла мелкозернистой.
При введении циркония в конструкционную сталь заметно возрастает ее окалиностойкость: потери в массе стали, в которой содержится 0,2-0,3% циркония, после трехчасовой выдержки при 820°С примерно в шесть-семь раз меньше, чем той же стали, но не легированной цирконием.
Цирконий значительно повышает и коррозионную стойкость сталей. Так, после трехмесячного пребывания в воде конструкционной стали потеря в массе в пересчете на 1 квадратный метр составила 16,3 грамма, в то время как образец той же стали, но с добавкой 0,2% циркония, "похудел" лишь на 7,6 грамма.
Циркониевую сталь можно нагревать до высоких температур, не опасаясь перегрева. Это позволяет интенсифицировать процессы ковки, штамповки, термообработки, цементации металла.
Плотная мелкозернистая структура и высокая прочность циркониевой стали в сочетании с хорошей жидкотекучестью позволяют изготовлять из нее отливки с более тонкими стенками, чем из обычной стали. Например, из стали с цирконием были отлиты опытные тонкостенные детали со стенками толщиной 2 миллиметра; толщина стенок этих деталей из такой же стали, но не содержащей циркония, составляла не менее 5- 6 миллиметров .
Цирконий оказался хорошим союзником и для многих цветных металлов. Добавка этого элемента к меди резко увеличивает ее прочность и жаропрочность, почти не снижая электропроводности. Высокой прочностью и электропроводностью обладает меднокадмиевый сплав с небольшим содержанием циркония. Введение его в алюминиевые сплавы заметно повышает их прочность, пластичность, сопротивление коррозии, теплостойкость. Прочность магнийцинковых сплавов при добавке незначительных количеств циркония возрастает примерно вдвое. Коррозионная стойкость сплава титана с цирконием в пятипроцентной соляной кислоте при 100°С в десятки раз выше, чем у технически чистого титана. Добавка циркония к молибдену заметно повышает твердость этого металла. Цирконий вводят в марганцовистую латунь, в алюминиевые, никелевые, свинцовые бронзы.
И все же, как ни важна и почетна роль легирующего элемента для сталей и сплавов, она не могла удовлетворить цирконий. Он продолжал искать и нашел свое настоящее призвание. Но прежде чем рассказать об этом, вернемся к его колыбели - в химическую лабораторию Мартина Клапрота.
Дело в том, что в 1789 году Клапрот открыл не только цирконий, но и еще один замечательный элемент, которому суждено было сыграть выдающуюся роль в науке и технике XX века. Этим элементом был уран. Ни сам Клапрот, ни кто-либо другой не могли тогда предвидеть, как сложатся судьбы "братьев" - циркония и урана. Пути их разошлись надолго: в течение полутора веков ничто не связывало эти элементы. И только в наши дни после долгой разлуки они встретились вновь. Сначала об этом знали лишь очень немногие ученые и инженеры, работавшие в области ядерной энергетики, куда, как известно, посторонним вход воспрещен. Встреча состоялась в атомных реакторах, где уран использовали как ядерное топливо, а цирконий должен был служить оболочкой для урановых стержней. Впрочем, точности ради, отметим, что еще за несколько лет до этого американские ученые попробовали применять цирконий в качестве материала для ядерного реактора, который был установлен на первой атомной подводной лодке США "Наутилус". Однако вскоре выяснилось, что из циркония выгоднее делать не стационарные детали активной зоны реактора, а оболочки топливных элементов. Вот тогда-то уран и попал в объятия циркония.
Выбор на цирконий пал не случайно: физикам было известно, что он, в отличие от многих других металлов, легко пропускает нейтроны, а именно таким свойством, называемом нейтронной прозрачностью, должен обладать материал для корпусов урановых стержней. Правда, некоторые металлы - магний, алюминий, олово - в этом отношении сходны с цирконием, но они легкоплавки и нежаропрочны. Цирконию же, который плавится лишь при 1850°С, тепловые нагрузки ядерной энергетики вполне по плечу.
Однако и у циркония есть кое-какие грешки, которые могли бы помешать ему работать в этой ответственной области. Дело в том, что прозрачен для нейтронов только цирконий высокой степени чистоты. Вот тут-то и приходится снова вспомнить о гафнии - металле, который по химическим свойствам может быть назван близнецом циркония. Но взгляды на нейтроны у них оказались противоположными: гафний с жадностью поглощает нейтроны (в сотни раз сильнее, чем цирконий). Более того, примеси гафния даже в гомеопатических дозах способны испортить "кровь" цирконию и лишить его нейтронной прозрачности. Технические условия на цирконий так называемой реакторной чистоты допускают присутствие в нем не больше нескольких сотых долей процента гафния. Но и такие крохи до вольно существенно - в несколько раз - снижают нейтронную прозрачность циркония.
Поскольку в природе эти металлы обычно находятся вместе, получить полностью свободный от гафния цирконий - задача колоссальной трудности. И тем не менее химикам и металлургам пришлось взяться за эту проблему, так как атомная промышленность крайне нуждалась в конструкционном материале.
Когда задача была решена, на повестку дня встала другая: добиться того, чтобы при изготовлении конструкций из чистейшего циркония в процессе сварки в него не попадали чужеродные атомы, которые могли бы оказаться непреодолимой преградой на пути нейтронов и тем самым свести на нет все достоинства этого металла. К тому же сварку нужно было проводить таким образом, чтобы не нарушить однородность металла: сварочный шов должен обладать теми же свойствами, что и свариваемый материал. На помощь был призван электронный луч. Чистота и точность электроннолучевой сварки позволили решить и эту проблему - цирконий стал "одеждой" урановых стержней.
Именно тогда и произошел резкий скачок в производстве этого металла: только за десятилетие - с 1949 по 1959 год - мировое производство циркония возросло в тысячу раз! В ход пошли большие скопления цирконовых песков, которые раньше служили отходами при добыче других ископаемых. Так, в Калифорнии при добыче золота драгами в руслах древних рек вместе с золотом на промывку поднимали значительное количество циркона, но из-за отсутствия спроса его сбрасывали в отвалы. В штате Орегон (США) в годы войны добывали хромит, а попутно получали некоторое количество циркона, который не интересовал тогда промышленность и потому его не вывозили с места добычи. Когда же вскоре после войны начался циркониевый бум, все эти отвалы оказались лакомым кусочком. Некоторые металлы, в том числе цирконий, в процессе гидрирования, т.е. насыщения водородом, меняют свою кристаллическую решетку и заметно увеличиваются в объеме - намного больше, чем при обычном нагреве. На этом свойстве "разбухания" основан изобретенный советскими специалистами оригинальный способ соединения металлических и других поверхностей в тех случаях, когда сварка или пайка помочь не в силах, например, когда нужно изготовить двухслойную трубу из различных материалов - легкоплавкого (алюминия, меди, пластмасс) и тугоплавкого (жаропрочной стали, вольфрама, керамики). В чем же суть нового способа? Если на цилиндр из склонного к "разбуханию" металла плотно насадить одну на другую две разнородные трубы, а затем подвергнуть металл гидрированию, то, "разбухая", он плотно припечатает эти трубы друг к другу. Так, например, втулки из нержавеющей стали и алюминиевого сплава, надетые на кольцо из циркония, после часового пребывания в атмосфере водорода при 400°С "склеились" настолько прочно, что их невозможно было разъединить.
Из смеси порошка металлического циркония с горючими соединениями изготовляют осветительные ракеты, дающие большое количество света. Циркониевая фольга при горении дает в полтора раза больше света, чем алюминиевая. "Вспышки" с циркониевым заполнением удобны тем, что занимают совсем мало места - они могут быть величиной с наперсток. К циркониевым сплавам все внимательнее присматриваются конструкторы ракетной техники: вполне возможно, что из жаропрочных сплавов этого элемента будут выполнены передние кромки космических кораблей, предназначенных для регулярных рейсов в просторах вселенной.[4,c.142]