Операции над матрицами и их свойства
Произведение матрицы на число.
Произведением матрицы A на число λназывается такая матрица B, каждый элемент которой находится по формуле:
bij=λ × aij
Пример:
A=
‒ 3A= =
2. Сумма матриц.
Суммой матриц A и B одинаковой размерности называется матрица C, каждый элемент которой находится по формуле: (Cij= Aij +Bij), т.е. матрицы складываются поэлементно.
Пример: + = =
3. Разность матриц.
А ‒ В = А + (‒1) × В
Пример: ‒ = =
4. Произведение матриц.
Произведением матрицы Аm×lна матрицу Вl×nназывается матрица Сm×n,каждый элемент которойcijравен сумме произведений всех элементов i – ой строки матрицы A на соответствующие элементыj ‒ того столбца матрицы B.
Пример:
A2×3= ,B3×3 =
= =
5. Возведение в степень с натуральным показателем квадратных матриц.
= A×A….A
n ‒ раз.
Пример:
A=
= = =
=
Транспонирование матриц.
Матрица АТ (или АI) называется транспонированной к матрице A, если строки матрицы A заменены соответствующими столбцами матрицы B, т.е. при транспонировании строки и столбцы меняются местами.
А3×2 =
=
Свойства операций.
1. Коммутативность (переместительный закон)
A + B = B + A; т. е. сумма матриц коммутативна.
A × B¹B × A; т. е. произведение не коммутативно.
2. Ассоциативность (сочетательный закон)
A + (B + С) = (A + B) + С;
A × (B × С) = (A × B) × С;
3. Дистрибутивность (распределительный закон)
(A + B) × С = A×C + B×C;
4. A × E = A.
Определители квадратных матриц и способы их вычисления.
Определителем квадратной матрицы называется число, характеризующее эту матрицу.
Определители обозначаются двумя вертикальными чертами:
│A│ или ∆ (дельта).
Определителем первого порядка квадратной матрицы первого порядка A = (а11) называется число, равное элементу этой матрицы.
│а11│= а11.
Определителем второго порядка квадратной матрицы A = называется число, вычисляемое по формуле:
Пример:
= – 3 × 7 – 6 × (– 5) = – 21+30 = 9.
Определителем третьего порядка квадратной матрицы третьего порядка называется число, вычисляемое по формуле:
Правило Саррюса (правило треугольника).
Пример 1:
= – 2×1× (–5) + 5×4×(– 4) + 3×2×(– 3) – (– 3) ×1× (– 4) – 4×2×
(– 2) – 5×3 × (– 5) = 10 – 80 –18 –12 +16 +75 = – 9.
Пример 2:
= 45 + 8 ‒ 24 ‒ 60 + 6 ‒ 24 = ‒ 49.
Минором Mij элемента aijквадратной матрицы n ‒ го порядка называется определитель (n ‒ 1) ‒ го порядка, полученный из данной матрицы вычеркиванием i ‒ й строки и j ‒ го столбца, на пересечении которых стоит данный элемент.
Пример:
;
M11 = = 15 + 2 = 17;
M12 = = – 6 – 6 = –12; и т. д. всего 9 миноров.
Алгебраическим дополнением Aijэлемента aij квадратной матрицы называется его минор, взятый со знаком (‒1)i+j.
Пример:
А 11 = (–1)1+1 × M11 = 17.
А 12 = (–1)1+2 × M12 = ‒ 1×M12 = 12.
А 13 = (–1)1+3 × = 4 ‒ 30= – 26; и т.д.
Теорема Лапласа
Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.
по I стр. = ×(–1) 1+2 × + ×(–1) 1+2 ×
× + ×(–1) 1+2× ;
Пример:
по II стр. = ‒ 2×(–1)2+1 × +5×(–1)2+2 × +1×
×(–1) 2+3× = 2×(–12+4)+5×(9–12)–1×(–6+24) = 16–15–18= – 49.