Глава 2. Методики очистки газов от летучих органических соединений

Содержание

Введение.
Глава 1. Газовые выбросы при производстве автомобильных кондиционеров.
Глава 2. Методы очистки газов от летучих органических соединений.
2.1. Термические методы.
2.2. Химические методы.
2.3. Адсорбция.
2.4. Абсорбция.
2.5. Преимущества и недостатки всех методов.
Глава 3. Существующие типы абсорберов.
2.1. Поверхностные абсорберы.
2.2. Барботажные (тарельчатые) абсорберы.
2.3. Распыливающие абсорберы.
Глава 4. Выбор прототипа абсорбера.
Выводы.
Литература.
   

.

Введение

В настоящее время охлаждающие жидкости нашли широкое применение в жизни людей. Они широко используются для автомобилей (в виде тосола, антифриза), при металлообработке и строительстве (например, в виде СОЖ) и т.д.

В своей курсовой работе я решила рассмотреть охлаждающие жидкости при производстве автомобильных кондиционеров, рассмотреть методы, применяемые при очистке газов от летучих органических соединений, их преимущества и недостатки, выбрать более подходящий прибор для данной операции и проанализировать все отрицательные и положительные факторы со стороны данного метода и прибора.

Стандартно в автомобильные кондиционеры заливают фреон. Фреоны очень инертны в химическом отношении, поэтому они не горят на воздухе, невзрывоопасны даже при контакте с открытым пламенем. Однако при нагревании фреонов свыше 250°C образуются весьма ядовитые продукты, например фосген COCl2, который в годы первой мировой войны использовался как боевое отравляющее вещество. Считается, что причиной уменьшения озона в стратосфере и образование озоновых дыр является производство и применение хлор- и бромсодержащих фреонов.[2]

Попадая после использования в атмосферу, они разлагаются под воздействием ультрафиолетового излучения Солнца. Высвободившиеся компоненты активно взаимодействуют с озоном в так называемом галогеновом цикле распада атмосферного озона.

В настоящее время в автомобильные кондиционеры заливают вещества в виде растворов этанола и о-крезола. Минус этих веществ состоит в том, что они имеют свойство летучести. За счет чего наносят вред окружающей среде при их выбросах в производстве.

Целью моей курсовой работы по дисциплине «Промышленная экология» является рассмотрение методов очистки газов от ЛОС и выбор прототипа для данной операции.

Для выполнения поставленной в курсовой работе цели мной решались следующие задачи:

1. узнать, какие именно газовые выбросы попадают в атмосферу при производстве автомобильных кондиционеров.

2. рассмотреть существующие методы очистки газов от ЛОС.

3. проанализировать и выбрать наиболее подходящий тип абсорбера.

4. сделать выводы по данной теме работы.

Глава 1. Газовые выбросы при производстве автомобильных кондиционеров.[11]

Кондиционер - настолько удобная в авто функция, которая широко используется, что обладатели автомобилей с системой кондиционирования вряд ли будут согласны на авто без такого «чуда техники».

Автомобильный кондиционер - это довольно сложная замкнутая герметичная система. Правильная эксплуатация кондиционера позволяет продлить срок его использования до максимума, и кто сталкивался с подобным, подтвердит это.

Принцип работы автокондиционера похож на принцип работы обычного холодильника.

Действие системы кондиционирования опирается на 3-х следующих физических законах:

Закон 1. Тепло всегда перемещается из физического тела с высокой температурой в физическое тело с низкой температурой. Тепло является одним из видов энергии, а температура – одной из единиц измерения величины энергии.

Закон 2.Для превращения жидкости в газообразное состояние необходимо тепло. Например, при испарении воды кипячением горелкой происходит большое поглощение количества тепла, и температура воды не изменяется, наоборот, если у газообразного вещества забирать тепло, то оно превращается в жидкость. Температура при которой кипит вода и получается водяной пар, связана с давлением. Точка кипения повышается с повышением давления.

Закон 3.Если сжать газ, то температура и давление газа возрастают. Например, если в дизельном двигателе поршень движется вверх-вниз, температура воздуха поднимается из-за сжатия. При этом если в цилиндр впрыснется топливо, то немедленно произойдет взрыв смеси.

Если вышеуказанные законы применять относительно к основному циклу охлаждения, то это выглядит следующим образом. Хладагент в жидком состоянии, превращаясь в газообразное, поглощает из атмосферы тепло (законы 1 и 2).

Высокотемпературный газ, сжимаясь, достигает высокой температуры, немного большей, чем температура окружающего воздуха (закон 3).Окружающий воздух (температура ниже, чем температура газа в системе), поглощая тепло, превращает газ в жидкость (законы 1 и 2).Жидкость, возращаясь к начальной точке цикла, используется вновь.

Хладагент циркулирует линии закрытого контура и его составляющих частей. Подобные циклы хладагент вынужден непрерывно повторять, и это называется циклом хладагента. Явление, возникающее в зависимости от циркулирования хладагента в пределах цикла, связаны с изменением каждого значения давления и температуры при превращении хладагента в газ и конденсации вновь в жидкость. Система охлаждения опирается на нескольких неизменных физических законах. Подобные законы вытекают из обсуждения о том, какие явления вызывает хладагент при работе системы охлаждения.

Газ хладагент всасывается и сжимается компрессором до высоких температуры и давления (80˚С, 15 кг/см2) и затем выпускается.

Хладагент, выпущенный из компрессора, поступает на конденсатор и принудительно охлаждается вентилятором системы охлаждения, при этом отдавая “скрытое” тепло конденсации воздуху, проходящему через конденсатор, превращается в жидкость. Температура при этом составляет около 50 С. Превращенный в жидкость хладагент после удаления влаги и пыли в приемнике-осушителе поступает на расширительный клапан.

Жидкий хладагент высокого давления в расширительном клапане, резко расширяясь, превращается в хладагент туманообразного состояния с низкими температурой и давлением (-2˚С, 2,0 кг/см2), такой хладогент далее течет на испаритель.

Хладагент в туманообразном состоянии, войдя в испаритель и проходя через вентилятор. Отнимая “скрытое” тепло испарения у сжатого воздуха, охлаждает воздух в окрестности. Одновременно с охлаждением из туманообразного превращается в газообразное состояние и всасывается компрессором для повторного цикла.

Подобным образом хладагент, повторяя кругооборот по циклу, осуществляет охлаждение. В общем, для превращения газа в жидкость, достаточно нагнетать давление, но для облегчения превращения в жидкость одновременно с нагнетанием давления и охлаждают. Для этого в современных холодильных установках необходимы компрессор и конденсатор.

Хладагент является легко летучим веществом, играющим роль передатчика тепла при циркулировании внутри контура охлаждающей системы.

Рассмотрим на более точном примере испарение газов при производстве автомобильных автокондиционеров.

Количество летучей части обоих веществ– 10% (8,3% на этанол и 1,7% ксилол).

В каждый кондиционер заливают смесь из этанола и о-крезола в количестве 3л на 1 кондиционер. Смесь состоит из равных пропорций жидкостей, т.е. 1,5л этанола смешивается с 1,5л о-крезола.

В год (с учетом выходных и праздников) общей смеси затрачивается:

300 * 251 = 75 300 (л).

Из них: 75 300 / 2 = 37 650 (л) приходится на этанол, и столько же на о-крезол.

В среднем в год: 640,05 (л) – улетучивается о-крезола, 3 124,95 (л) – улетучивается этанола.

Всего в атмосферу этих веществ выбрасывается:3 124,95 + 640,04 = 3 765 (л)

Так как данные вещества относятся к токсичным, то по возможности окружающую среду нужно очищать от них. При более широких возможностях, используя наиболее подходящий метод очистки, можно свести процесс очистки к тому, что будет возможно их дальнейшее вторичное применение.

Глава 2. Методики очистки газов от летучих органических соединений.

в ч

В настоящее время широко применяются несколько методов очистки газов от ЛОС, и все они делятся на рекуперативные и деструктивные.[3]

Первые позволяют возвращать в производство компоненты выбросов, вторые трансформируют эти компоненты в менее вредные.

Для очистки от газов применяют следующие методы:

1. Термические методы очистки[6].

Являются деструктивными. При достаточной теплотворной способности выбросного газа его можно сжечь напрямую (все видели факелы, на которых горит попутный газ), можно применить каталитическое окисление, или (при малой теплотворной способности газа) использовать его в качестве дутьевого газа в печах. Получающиеся в результате термического разложения компоненты должны быть менее опасными для окружающей среды, чем исходный компонент (например, органические соединения можно окислить до углекислого газа и воды – если нет других элементов, кроме кислорода, углерода и водорода). Этот метод позволяет добиться высокой степени очистки, но может стоить дорого, особенно если используется дополнительное топливо.

2.Химические методы очистки. [6]

Как правило связанные с использованием катализаторов. Таковым, например, является каталитическое восстановление оксидов азота из выхлопных газов автотранспорта (в общем виде механизм этой реакции описывается схемой (2.1):

CnHm + NOx + CO----->CO2 + H2O +N2, Kt (2.1)

где в качестве катализатора Kt используется платина, палладий, рутений или другие вещества). Методы могут требовать применения реагентов и дорогих катализаторов.

3. Адсорбция[5].

То есть поглощение твёрдым веществом газового (в нашем случае) компонента. В качестве адсорбентов (поглотителей) применяют активные угли различных марок, цеолиты, силикагель и другие вещества. Адсорбция – надёжный способ, позволяющий достигать высоких степеней очистки; кроме того, это регенеративный метод, то есть уловленный ценный компонент можно вернуть обратно в производство. Применяется периодическая и непрерывная адсорбция. В первом случае по достижении полной адсорбционной емкости адсорбента газовый поток направляют в другой адсорбер, а адсорбент регенерируют – для этого используется отдувка острым паром или горячим газом. Затем ценный компонент можно получить из конденсата (если для регенерации использовался острый пар); для этой цели используется ректификация, экстракция или отстаивание (последнее возможно в случае взаимной нерастворимости воды и ценного компонента). При непрерывной адсорбции слой адсорбента постоянно перемещается: часть его работает на поглощение, часть – регенерируется. Это, конечно, способствует истиранию адсорбента. В случае достаточной стоимости регенерируемого компонента использование адсорбции может быть выгодным. Например, проведенный для одного из кабельных заводов расчёт участка рекуперации ксилола (весной 2001 года) показал, что срок окупаемости составит менее года. При этом 600 т ксилола, которые ежегодно попадали в атмосферу, будут возвращены в производство.

4. Абсорбция[1].

То есть поглощение газов жидкостью. Этот метод основан либо на процессе растворения газовых компонентов в жидкости (физическая адсорбция), либо на растворении вместе с химической реакцией – химическая адсорбция (например, поглощение кислого газа раствором с щелочной реакцией). Этот метод также является регенеративным, из полученного раствора можно выделить ценный компонент (при использовании химической адсорбции это не всегда возможно). В любом случае вода очищается и хотя бы частично возвращается в систему оборотного водоснабжения.

2.1. Термические методы. [5]

Термический метод обезвреживания получил более широкое распространение, так как некоторые вредные примеси трудно или невозможно полностью нейтрализовать другими методами из-за сложности их состава, низкой концентрации, а также из-за отсутствия эффективных средств улавливания. Он заключается в том, что все органические вещества полностью окисляются кислородом воздуха при высокой температуре до нетоксичных соединений. В результате выделяются минеральные продукты, вода, диоксид углерода, а также теплота, которые требуют дальнейшей их утилизации.

Метод термического окисления (дожига) органических веществ, содержащихся в отходящих газах, относится к энергоемким. Для поддержания необходимой температуры обезвреживания отходящих газов (800 -1200°С) используется высококалорийное топливо, поэтому преимущественно этот способ применяется для обезвреживания газов сложного состава и в тех случаях, когда возврат уловленных примесей в производство экономически нерентабелен.

Наиболее экономичным приемом термического обезвреживания газов из выбросов является их использование вместо дутьевого воздуха при сжигании высококалорийного топлива (природного газа, мазута) в действующих тепловых агрегатах, таких как печи, сушилки, топки и т. д. Для обеспечения надежного и качественного горения минимальное содержание кислорода в газовых выбросах должно быть около 17 %.

Метод дожига углеводородов получает все большее распространение. Накоплен опыт термического обезвреживания воздуха, содержащего примеси стирола, формальдегида, толуола, бутилацетата и других органических веществ.

Установки прямого сжигания представляют собой камеру, в которую по самостоятельным каналам подается топливо, очищаемый газ и воздух. Для полного окисления горючих компонентов необходимо тщательное перемешивание смеси. С целью снижения затрат отходящие газы чаще всего сжигаются совместно с твердыми отходами. В результате упрощается проблема утилизации промышленных отходов в целом, а также резко снижаются энергетические и эксплуатационные затраты. С помощью современных установок термодожига можно обеспечить полную безвредность и высокую производительность этого процесса.

Одним из таких устройств является установка типа «Вихрь» для бездымного сжигания нефтепродуктов, подлежащих вторичному использованию. В этой установке совмещены функции обезвреживания газов и сжигания отходов. Поступающий в установку шлам первоначально автоматически обезвоживается, а затем направляется в топочную камеру, где сжигается в ускоренном режиме при температуре порядка 1000 °С и подаче строго рассчитанного количества сжатого воздуха. Такие жесткие условия процесса способствуют тому, что побочные реакции окисления, ведущие к образованию тяжелых смолистых продуктов, оседающих плотными трудно выгораемыми наслоениями, отсутствуют. Процесс обеспечивает полное окисление продуктов, бездымность горения, отсутствие запахов и требуемую степень обезвреживания отходящих газов. По простоте конструкции, надежности в работе, высокому КПД и возможности подключения теплообменников для утилизации тепла установка «Вихрь» значительно превосходит другие агрегаты аналогичного назначения.

С целью снижения температуры обезвреживания органических примесей применяют установки сжигания, где в качестве инициатора окисления используются различные катализаторы. Тем самым достигается снижение температуры обезвреживания более чем в два раза и обеспечивается возможность нейтрализации газов с низким содержанием вредных примесей.

Особенность установки термокаталитического обезвреживания состоит в том, что затраты энергии необходимы только в момент пуска, т. е. когда требуется подогреть газовый поток до начальной температуры каталитического окисления (300 — 400 °С). Затем процесс протекает самопроизвольно за счет теплоты реакции окисления.

В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества – от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения. Обычно каталитическую активность проявляют твердые вещества с ионными или металлическими связями, обладающие сильными межатомными полями. Одно из основных требований, предъявляемых к катализатору - устойчивость его структуры в условиях реакции. Например, металлы не должны в процессе реакции превращаться в неактивные соединения.

Современные катализаторы обезвреживания характеризуются высокой активностью и селективностью, механической прочностью и устойчивостью к действию ядов и температур. Промышленные катализаторы, изготавливаемые в виде колец и блоков сотовой структуры, обладают малым гидродинамическим сопротивлением и высокой внешней удельной поверхностью.

Наибольшее распространение получили каталитические методы обезвреживания отходящих газов в неподвижном слое катализатора. Можно выделить два принципиально различных метода осуществления процесса газоочистки - в стационарном и в искусственно создаваемом нестационарном режимах.

1. Стационарный метод.

Приемлемые для практики скорости химических реакций достигаются на большинстве дешевых промышленных катализаторов при температуре 200-600 °C. После предварительной очистки от пыли (до 20 мг/м³) и различных каталитических ядов (As,Cl2 и др.), газы обычно имеют значительно более низкую температуру.

Подогрев газов до необходимых температур можно осуществлять за счет ввода горячих дымовых газов или с помощью электроподогревателя. После прохождения слоя катализатора очищенные газы выбрасываются в атмосферу, что требует значительных энергозатрат. Добиться снижения энергозатрат можно, если тепло отходящих газов использовать для нагревания газов, поступающих в очистку. Для нагрева служат обычно рекуперативные трубчатые теплообменники.

При определенных условиях, когда концентрация горючих примесей в отходящих газах превышает 4-5 г/м³, осуществление процесса по схеме с теплообменником позволяет обойтись без дополнительных затрат.

Такие аппараты могут эффективно работать только при постоянных концентрациях (расходах) или при использовании совершенных систем автоматического управления процессом.

Эти трудности удается преодолеть, проводя газоочистку в нестационарном режиме.

2. Нестационарный метод ( реверс-процесс).

Реверс-процесс предусматривает периодическое изменение направлений фильтрации газовой смеси в слое катализатора с помощью специальных клапанов. Процесс протекает следующим образом. Слой катализатора предварительно нагревают до температуры, при которой каталитический процесс протекает с высокой скоростью. После этого в аппарат подают очищенный газ с низкой температурой, при которой скорость химического превращения пренебрежимо мала. От прямого контакта с твердым материалом газ нагревается, и в слое катализатора начинает с заметной скоростью идти каталитическая реакция. Слой твердого материала (катализатора), отдавая тепло газу, постепенно охлаждается до температуры, равной температуре газа на входе. Поскольку в ходе реакции выделяется тепло, температура в слое может превышать температуру начального разогрева. В реакторе формируется тепловая волна, которая перемещается в направлении фильтрации реакционной смеси, т.е. в направлении выхода из слоя. Периодическое переключение направления подачи газа на противоположное позволяет удержать тепловую волну в пределах слоя как угодно долго.

Преимущество этого метода в устойчивости работы при колебаниях концентраций горючих смесей и отсутствие теплообменников.

Основным направлением развития термокаталитических методов является создание дешевых катализаторов, эффективно работающих при низких температурах и устойчивых к различным ядам, а также разработка энергосберегающих технологических процессов с малыми капитальными затратами на оборудование. Наиболее массовое применение термокаталитические методы находят при очистке газов от оксидов азота, обезвреживании и утилизации разнообразных сернистых соединений, обезвреживания органических соединений и СО.

Для концентраций ниже 1 г/м³ и больших объемов очищаемых газов использование термокаталитического метода требует высоких энергозатрат, а также большого количества катализатора.

Термокаталитическое дожигание органических веществ до диоксида углерода и воды применяют в тех случаях, когда отходящие газы представляют собой многокомпонентную смесь различных органических веществ. В настоящее время разработаны типовые схемы обезвреживания выбросов от сушильных камер путем сжигания паров растворителей на поверхности катализатора. Внедрение схем, предусматривающих последующую утилизацию теплоты, позволяет достичь сокращения расхода теплоносителей не менее чем на 20 % (при сжигании паров с низким содержанием горючего компонента).

2.2. Химические методы. [7]

Устранение нежелательных компонентов в газах с использованием химических методов означает, что в основе процесса лежит химическая реакция и ее роль является преобладающей по сравнению с процессами адсорбции, абсорбции, конденсации или сжигания. В большинстве случаев, однако, технология сочетает в себе несколько операций и достаточно сложно классифицировать метод очистки в соответствии с перечисленными выше физико-химическими методами. Например, метод очистки газа от SO2 с использованием извести или известкового молока не приводится здесь в качестве химического, поскольку определяющей операцией является абсорбция на стадии скруббирования. Из этого примера видно, что определение, данное «химическому» методу очистки, неоднозначно и вводится для удобства изложения и необходимости классификации.

1) Введение аммиака.

Методы очистки газов от NOX являются наиболее удачным примером применения химических методов для обеспечения экологической чистоты промышленных выбросов. Особо отмечены два метода: некаталитическое гомогенное восстановление NOX добавками аммиака и селективный гетерогенно-каталитический процесс восстановления оксидов азота в присутствии NH3.

2) Метод селективного каталитического восстановления (СКВ).

В мировой практике проблеме очистки топочных газов уделяется большое внимание и разрабатывается несколько направлений, Однако наиболее перспективен «сухой» (без стадии промывки) способ, так как он прост и отличается более низкой стоимостью. Введение стадии абсорбции оксидов растворами резко усложняет технологию вследствие необходимости очистки сточных вод. Селективное каталитическое восстановление основано на реакции восстановления оксидов азота аммиаком на поверхности гетерогенного катализатора в присутствии кислорода. Термин «селективный» в данном случае отражает предпочтительное протекание каталитической реакции аммиака с оксидами азота по сравнению с кислородом. В то же время кислород является реагентом в каталитической реакции. Метод СКВ применим в первую очередь к топочным газам в условиях полного сгорания содержание кислорода в них более 1 % и отходящий газ подвергается химической реакции в окислительных условиях. Ранее описанный процесс некаталитического восстановления (НКВ) применим к топочным газам с высоким процентным содержанием исходного топлива, т. е. когда обеспечиваются восстанавливающие свойства газового потока. Процесс СКВ может быть представлен следующими брутто-уравнениями 2.2. и 2.3.:

2NH3 + 2NO + ½02 -+ 2N2 + ЗН2О; (2.2)

2NH3 + N02 + ½02 + 3/2N2 + 3H20. (2.3)

3) Неселективное каталитическое восстановление (НСКВ).

В данном методе восстанавливающий агент — аммиак — заменяется другими восстановителями (Н2, СО, углеводороды). Эти востановители действуют не селективно, поскольку взаимодействуют с кислородом и SOX газового потока; это взаимодействие идёт параллельно с целевой реакцией восстановления оксидов азота, что требует значительного избытка восстановителей. Чтобы обеспечить неселективное каталитическое восстановление, целесообразно проводить сжигание таким образом, чтобы образующийся топочный газ обладал восстанавливающими свойствами. Практически это означает подачу в камеру сжигания топлива и кислорода в количествах, близких к стехиометрическому отношению (так называемая обедненная горючим смесь). В этих условиях СО и непрореагировавшие углеводороды вступают в реакцию каталитического восстановления NOX и отпадает необходимость в дополнительном введении восстановителя в газовый поток. Такому процессу сжигания аналогичен процесс регулирования степени сгорания топлива в двигателях внутреннего сгорания автомобилей. Перенос технических решений автомобильной промышленности на стационарные сжигающие устройства находятся в стадии начальной разработки и не обсуждается более подробно.

4) Облучение потоком электронов.

Другой перспективный метод очистки отходящих газов от оксидов азота — стимулирование химических реакций с помощью электронного пучка. Метод обеспечивает восстановление NOX и SОx в реакции с аммиаком в отсутствие катализатора под дейcтвием стимулирующего излучения. Первоначально поток топочных газов очищается от золы, затем подается аммиак и газовая смесь облучается в реакторе. В результате аммиак и оксиды превращаются в сухой порошок неорганических солей: (NH4)2SO4 и (NH4)2SO4*2NH4NO3. В настоящее время нет точного описания химического механизма. После отделения солей горячий топочный газ выбрасывается через дымоход. Пилотная установка, работающая на этом принципе, обеспечивает восстановление 85 % оксид азота и 95 % оксидов серы в сильно загрязненных топочных газ котельных, использующих нефть в качестве топлива. Метод находится в стадии развития, однако имеет перспективы благодаря высокой эффективности одновременного удаления оксидов азот и серы, а также возможности получения в сухом виде ценного полупродукта для производства удобрений. Экономическую сторону такого способа очистки следует оценить в условиях длительной эксплуатации.

2.3. Адсорбция. [8]

Адсорбция (лат. Ad — на, при; sorbeo — поглощаю) — в широком смысле, процесс изменения концентрации у поверхности раздела двух фаз. В более узком и употребительном — это повышение концентрации одного вещества (газ, жидкость) у поверхности другого вещества (жидкость, твердое тело).

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое — адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) — адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция. Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы)[7]

На поверхности раздела двух фаз помимо адсорбции, обусловленной в основном физическими взаимодействиями (главным образом это Ван-дер-Ваальсовы силы), может идти химическая реакция. Этот процесс называется хемосорбцией. Чёткое разделение на адсорбцию и хемосорбцию не всегда возможно. Одним из основных параметров по которым различаются эти явления является тепловой эффект: так, тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата, тепловой эффект хемосорбции значительно выше. Кроме того в отличие от адсорбции хемосорбция обычно является необратимой и локализованной. Примером промежуточных вариантов, сочетающих черты и адсорбции и хемосорбции является взаимодействие кислорода на металлах и водорода на никеле: при низких температурах они адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать хемосорбция.

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества)Ван-дер-Ваальсовы силы. Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называют хемосорбцией и химической адсорбцией. «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией.

Физическая адсорбция является обратимым процессом, условие равновесия определяется равными скоростями адсорбции молекул адсорбтива P на вакантных местах поверхности адсорбента S* и десорбции — освобождения адсорбата из связанного состояния S − P (2.4):

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru ; (2.4)

уравнение равновесия в таком случае (2.5):

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru , (2.5)

где K — константа равновесия;

[S − P] и [S*] — доли поверхности адсорбента, занятые и незанятые адсорбатом;

[P] — концентрация адсорбтива.

Количественно процесс физической мономолекулярной адсорбции в случае, когда межмолекулярным взаимодействием адсорбата можно пренебречь, описывается уравнением Ленгмюра (2.6):

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru , (2.6)

где Глава 2. Методики очистки газов от летучих органических соединений - student2.ru — доля площади поверхности адсорбента, занятая адсорбатом;

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru — адсорбционный коэффициент Ленгмюра;

P — концентрация адсорбтива.

Поскольку [S – P] = θ и, соответственно, [S*] = 1 - θ, уравнение адсорбционного равновесия может быть записано следующим образом (2.7):

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru (2.7)

Уравнение Ленгмюра является одной из форм уравнения изотермы адсорбции. Под уравнением изотермы адсорбции (чаще применяют сокращённый термин — изотерма адсорбции) понимают зависимость равновесной величины адсорбции от концентрации адсорбтива a=f(С) при постоянной температуре (T=const). Концентрация адсорбтива для случая адсорбции из жидкости выражается, как правило, в мольных либо массовых долях. Часто, особенно в случае адсорбции из растворов, пользуются относительной величиной: С/Сs, где С — концентрация, Сs — предельная концентрация (концентрация насыщения) адсорбтива при данной температуре. В случае адсорбции из газовой фазы концентрация может быть выражена в единицах абсолютного давления, либо, что особенно типично для адсорбции паров, в относительных единицах: P/Ps, где P — давление пара, Ps — давление насыщенных паров этого вещества. Саму величину адсорбции можно выразить также в единицах концентрации (отношение числа молекул адсорбата к общему числу молекул на границе раздела фаз). Для адсорбции на твёрдых адсорбентах, особенно при рассмотрении практических задач, используют отношение массы или количества поглощённого вещества к массе адсорбента, например мг/г или ммоль/г. Адсорбция — всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма — активированный уголь), силикагели, цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Адсорбция (особенно хемосорбция) имеет также важное значение в гетерогенном катализе. Пример адсорбционных установок приведён на странице азотные установки.

2.4. Абсорбция. [1]

Абсорбцией называют процесс поглощения газов или паров из газовых (паровоздушных) смесей жидкими поглотителя­ми, называемыми абсорбентами. Возможность проведения абсорб­ции основывается на растворимости газов в жидкостях. Процесс абсорбции является избирательным и обратным, что дает воз­можность применять его не только для получения растворов газов в жидкостях, но также и для разделения газовых и паровых смесей, например для извлечения из коксового газа аммиака, бензола.

Наибольшее распространение получили насадочные (поверхностные) и барботажные тарельчатые абсорберы. Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

Различают физическую и химическую (хемосорбция) абсорбцию. При физической абсорбции растворение (поглощение) газа (пара) не сопровождается химической реакцией. При хемосорбции абсор­бируемый компонент вступает в химическую реакцию в жидкой фазе.

Процесс физической абсорбции сопровождается вы­делением теплоты, повышением температуры абсорбера и газовой смеси. При повышении температуры возможно снижение раствори­мости газа в жидкости, поэтому в ряде случаев проводят охлаждение путем размещения в абсорбере охлаждающих поверхностей. Если температура процесса абсорбции не изменяется, то абсорб­цию называют изотермической. Если температура повышается (при отсутствии охлаждающих поверхностей), то абсорбцию называют неизотермической.

При повышении температуры поглощение газа жидкостью сни­жается. На рис.1.1 приведена зависимость растворимости газа в жидкости от температуры и давления. Как видно на рис. 1.1, при повышении парциального давления компонента растворимость газа при всех температурах t1, t2, t3увеличивается.

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru

Рис.1.1. График зависимости растворимости газа в жидкости от его парциального давления над раствором при различных температурах: pr-парциальное давление газа; х - концентрация газа в жидкости; t1, t2, t3- температуры процесса.

Скорость физической абсорбции определяется законами диф­фузии. Скорость физической абсорбции - количество вещества, передаваемое из газовой фазы в жидкую через единицу поверхности SП в единицу времени, - определяет­ся по уравнению (2.8):

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru , (2.8)

где Ку- коэффициент массопередачи, зависящий от коэффици­ентов массоотдачи;

yср - средняя движущая сила, выраженная через концентрации компонента в газовой фазе.

Учитывая, что молярная концентрация вещества в газовой фазе связана с парциальным давлением газа, уравнение имеет вид (2.9):

Глава 2. Методики очистки газов от летучих органических соединений - student2.ru , (2.9)

Наши рекомендации