Метод цепных подстановок и арифметических разниц
Метод цепных подстановок еще называют приемом последовательного (постепенного) изолирования факторов. Этот метод предназначен для измерения влияния факторных признаков на изменение результативного показателя при изучении функциональных зависимостей. Прием цепных подстановок может быть использован при анализе отклонений фактических знаний экономических показателей от плановых, а так же при изучении динамики показателей.
Метод цепных подстановок (ЦП) заключается в измерении влияния одного из нескольких факторов на обобщающий показатель при исключении действия остальных. Достигается это путем последовательной замены базисных значений факторов фактическими. Если, например, по базе (плану) у = а*в*с,
а по факту у/ = а/*в/*с/,
то отклонение
С помощью первой подстановки находим у1 = а/*в*с и
после второй - и, наконец, после третьей
Баланс отклонений Δу =
Прием цепных подстановок и арифметических разниц - достаточно простые и универсальные аналитические приемы. Однако они не инвариантны относительно порядка замены факторов. От того, в какой последовательности происходит замена, зависти результат разложения.
Существенным недостатком этих методов является также и то, что они обладают свойством неаддитивности по времени. Это означает, что результаты анализа, выполненного, например, за целый год, не будут совпадать с суммой соответствующих данных, полученных по месяцам или кварталам.
Разновидностью метода ЦП является метод абсолютных разниц (АР), который основан на прямом подсчете влияния каждого из факторов на изменение обобщающего показателя. используя этот метод и данные предыдущего примера, находим: . Баланс отклонений
Метод относительных разниц (ОР), как разновидность предыдущего, основывается на использовании отклонений относительных значений факторов. Если у = а*в*с; у/ = а/*в/*с/, то для измерения влияния факторов вначале находится коэффициенты отклонений их фактических значений от базовых: и т.д. Затем влияние каждого фактора определяется так:
Метод арифметических разниц нецелесообразно использовать для кратных моделей.
d. Дифференциальный метод.
Пусть z=f (x1, x2,…,xn), где f- дифференцируемая функция. Тогда:
где ∆z = z1-z0; ∆xi=x1i-x0i.
Отметим, что значения производных берутся в начальной точке (x01,…, x0m).
Таким образом, влияние фактора x1 будет выглядеть как
Этот метод может применяться при малых изменениях факторов. Отметим также, что для мультипликативных моделей метод совпадает с методом изолированного влияния факторов.