Вопрос 6 Схемы замещения сети. Назначение. Продольные и поперечные ветви схем замещения
Параметры и схемы замещения линий электропередачи
В большинстве случаев можно полагать, что параметры линии электропередачи (активное и реактивное сопротивления, активная и емкостная проводимости) равномерно распределены по ее длине. Для линии сравнительно небольшой длины распределенность параметров можно не учитывать и использовать сосредоточенные параметры: активное и реактивное сопротивления линии Rли Xл, активную и емкостную проводимости линии Gл иBл.
Воздушные линии электропередачи напряжением 110 кВ и выше длиной до 300 - 400 км обычно представляются П-образной схемой замещения (рис.3.1).
Рис. 3.1. П-образная схема замещения воздушной линийэлектропередачи | ||||
Активное сопротивление линии определяется по формуле:
Rл=roL, | (3.1) | ||||
где | ro - удельное сопротивление, Ом/км, при температурепровода +20°С; | ||||
L - длина линии, км. | |||||
Удельное сопротивление г0 определяется по таблицам в зависимости от поперечного сечения. При температуре провода, отличной от 200С, сопротивление линии уточняется.
Реактивное сопротивление определяется следующим образом:
Xл=xoL, | (3.2) | |||
где | xo -удельное реактивное сопротивление, Ом/км. | |||
Удельные индуктивные сопротивления фаз воздушной линии в общем случае различны. При расчетах симметричных режимов используют средние значения xo:
где | rпр – радиус провода, см; | ||
Dср – среднегеометрическое расстояние между фазами, см, определяемое следующим выражением: | |||
где | Dab, Dbc, Dca – расстояния между проводами соответственно фаз a, b, c, рис.3.2. |
При размещении параллельных цепей на двухцепных опорах потокосцепление каждого фазного провода определяется токами обеих цепей. Изменение xo из-за влияния второй цепи в первую очередь зависит от расстояния между цепями. Отличие xo одной цепи при учете и без учета влияния второй цепи не превышает 5—6 % и не учитывается при практических расчетах.
В линиях электропередачи при Uном ЗЗ0кВ провод каждой фазы расщепляется на несколько (N) проводов. Это соответствует увеличению эквивалентного радиуса. Эквивалентный радиус расщепленной фазы:
где | a – расстояние между проводами в фазе. |
Для сталеалюминиевых проводов xo определяется по справочным таблицам в зависимости от сечения и числа проводов в фазе.
Активная проводимость линии Gл соответствует двум видам потерь активной мощности: от тока утечки через изоляторы и на корону.
Токи утечки через изоляторы малы, поэтому потерями мощности в изоляторах можно пренебречь. В воздушных линиях напряжением 110кВ и выше при определенных условиях напряженность электрического поля на поверхности провода возрастает и становится больше критической. Воздухвокруг провода интенсивно ионизируется, образуя свечение - корону. Короне соответствуют потери активной мощности. Наиболее радикальным средством снижения потерь мощности на корону является увеличение диаметра провода. Наименьшие допустимые сечения проводов воздушных линий нормируются по условию образования короны: 110кВ — 70 мм2; 220кВ —240 мм2; 330кВ –2х240 мм2; 500кВ – 3х300 мм2; 750кВ – 4х400 или 5х240 мм2.
При расчете установившихся режимов электрических сетей напряжением до 220кВ активная проводимость практически не учитывается. В сетях с UномЗЗ0кВ при определении потерь мощности и при расчете оптимальных режимов необходимо учитывать потери на корону:
где | Рк0 - удельные потери активной мощности на корону, g0 -удельная активная проводимость. |
Емкостная проводимость линии Bл обусловлена емкостями между проводами разных фаз и емкостью провод - земля и определяется следующим образом:
Bл= boL, (3.7)
где bо - удельная емкостная проводимость, См/км, котораяможет быть определена по справочным таблицам или последующей формуле:
Для большинства расчетов в сетях 110-220 кВ линия электропередачи обычно представляется более простой схемой замещения (рис.3.3,б). В этой схеме вместо емкостной проводимости (рис.3.3,а) учитывается реактивная мощность, генерируемая емкостью линий. Половина емкостной (зарядной) мощности линии, Мвар, равна:
где | UФ и U – фазное и междуфазное напряжение, кВ; | |
Ib – емкостный ток на землю. |
Рис. 3.3. Схемы замещения линий электропередачи:а, б - воздушная линия 110-220-330 кВ; в - воздушная линия Uном 35 кВ; г -кабельная линия Uном10 кВ | ||||||
Из (3.8) следует, что мощность Qb, генерируемая линией, сильно зависит от напряжения. Для воздушных линий напряжением 35 кВ и ниже емкостную мощность можно не учитывать (рис.3.3, в). Для линий Uном ЗЗ0 кВ при длине более 300-400 км учитывают равномерное распределение сопротивлений и проводимостей вдоль линии. Схема замещения таких линий – четырехполюсник.
Кабельные линии электропередачи также представляют П-образной схемой замещения. Удельные активные и реактивные сопротивления ro, xoопределяют по справочным таблицам, так же как и для воздушных линий. Из (3.3), (3.7) видно, что xo уменьшается, а bo растет при сближении фазных проводников. Для кабельных линий расстояния между проводниками значительно меньше, чем для воздушных, поэтому xo мало и при расчетах режимов для кабельных сетей напряжением 10 кВ и ниже можно учитывать только активное сопротивление (рис.3.3, г). Емкостный ток и зарядная мощность Qb в кабельных линиях больше, чем в воздушных. В кабельных линиях высокого напряжения учитывают Qb (рис.3.3, б). Активную проводимость Gл учитывают для кабелей 110 кВ и выше.
Продольная часть схемы замещения содержит Rт и Xт - активное и реактивное сопротивления
Поперечная ветвь схемы состоит из активной и реактивной проводимостей Gт и Bт
Вопрос 7 Схема замещения ВЛ 110 кВ и выше длиной до 300 - 400 км обычно представляются П-образной схемой замещения (рис.3.1).
Рис. 3.1. П-образная схема замещения воздушной линийэлектропередачи | ||||
Активное сопротивление линии определяется по формуле:
Rл=roL, | (3.1) | ||||
где | ro - удельное сопротивление, Ом/км, при температурепровода +20°С; | ||||
L - длина линии, км. | |||||
Удельное сопротивление г0 определяется по таблицам в зависимости от поперечного сечения. При температуре провода, отличной от 200С, сопротивление линии уточняется.
Реактивное сопротивление определяется следующим образом:
Xл=xoL, | (3.2) | |||
где | xo -удельное реактивное сопротивление, Ом/км. | |||
Удельные индуктивные сопротивления фаз воздушной линии в общем случае различны. При расчетах симметричных режимов используют средние значения xo:
где | rпр – радиус провода, см; | ||
Dср – среднегеометрическое расстояние между фазами, см, определяемое следующим выражением: | |||
где | Dab, Dbc, Dca – расстояния между проводами соответственно фаз a, b, c, рис.3.2. |
При размещении параллельных цепей на двухцепных опорах потокосцепление каждого фазного провода определяется токами обеих цепей. Изменение xo из-за влияния второй цепи в первую очередь зависит от расстояния между цепями. Отличие xo одной цепи при учете и без учета влияния второй цепи не превышает 5—6 % и не учитывается при практических расчетах.
Вопрос 8 Схемы замещения линий электропередач BЛ35 кВ и менее Для воздушных линий напряжением 35 кВ и ниже емкостную мощность (QC) можно не учитывать, тогда схема замещения примет следующий вид:
Xо=0,144lg(Дср/rпр)+0,0157
в0=7,58∙10-6/lg(Дср/rпр)
В КЛ напряжением до 10 кВ небольших сечений (50 мм2 и менее) определяющим является активное сопротивление, и в таком случае индуктивные сопротивления могут не учитываться
Схема замещения ВЛ 0,38-35 кВ и КЛ 038-20 кВ