Виды вэр и способы их использования
Виды ВЭР | Носители ВЭР | Энергетический потенциал | Способ использования | |
Горючие | Газообразные отходы | Низкая теплота сгорания | Сжигание в топливо использующих установках | |
Тепловые | отходящие газы, готовая продукция и отходы производства, теплоносители охлаждения отработанный и попутный пар | энтальпия тоже | выработка в теплоутилизиционных установках водяного пара, горячей воды покрытие тепло потребности, выработка электроэнергии в конденсоционном или теплофикационном турбоагрегате | |
избыточное давление | газы с избыточным давлением | работа изоэнтропного расширения | выработка электроэнергии в газовом утилизационном турбоагрегате | |
Выход ВЭР - количество ВЭР, образующиеся в технологическом агрегате.
Выход ВЭР для горючих: q гор = m Qр;
для тепловых: qт =mі;
для ВЭР избыточного давления: qи= ml;
где q - выход соответствующих ВЭР, m - удельное или часовое количество энергоносителя, Qр- низшая теплота сгорания, і -
энтальпия энергоносителя, l - работа изоэнтропийного расширения газов.
Характеристика горючих ВЭР черной металлургии:
Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химический состав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса. Доля негорючих компонентов азота и углекислого газа в доменном газе составляет 70%. При сжигании доменного газа максимальная температура продуктов сгорания равна 1487 С. На выходе из печи газ загрязнен колошниковой пылью. Использовать доменный газ в качестве топлива можно только после его очистки.
Ферросплавный газ - образуется при выплавке ферросплавов в рудовосстановительных печах. Суммарное содержание сероводорода и оксида серы (4) в пересчете на оксид серы (4) не должно превышать 1 г\м3.
Конвертерный газ - образуется при выплавке стали в кислородных конвертерах. Газ в основном состоит из оксида углерода. В качестве топливных ВЭР конвертерный газ используется при отводе без дожигания.
Ценное технологическое и энергетическое топливо.
Коксовый газ - образуется при коксовании угольной шихты. В черной металлургии в качестве топлива используется после извлечения химических продуктов. Компоненты коксового газа: водород, кислород, метан, азот, углекислый и угарный газы.
Характеристика тепловых ВЭР.
Физическая теплота готового продукта из шлаков.
Из печей и агрегатов металлургического производства готовый продукт и шлак выходят с высокой температурой. В некоторых случаях эта теплота ВЭР. Теплота жидкого чугуна используется в последующих переделах (мартеновские печи, кислородные конвертеры).
Теплота жидкой стали используется в прокатном производстве за счет горячего посада слитков. Физическая теплота вторичных газов.
Использование физической теплоты коксового газа возможна после сухой очистки. Наибольшую температуру имеют конверторные газы.
Отходящие газы мартеновских печей состоят из продуктов сгорания топлива и газообразных компонентов химических реакций, протекающих в технологическом процессе. К тепловым ВЭР относятся энергоносители в виде водяного пара, горячей воды и вентиляционных выбросов.
32. Прямое преобразование солнечной энергии в тепловую и электрическую.Ветроэнергетика
К настоящему времени основными способами использования солнечной энергии являются преобразование ее в электрическую и тепловую.
Солнечные коллекторы (СК) являются техническими устройствами, предназначенными для прямого преобразования солнечного излучения в тепловую энергию в системах теплоснабжения для нагрева воздуха, воды или других жидкостей. Системы теплоснабжения принято разделять на пассивные и активные. Самыми простыми и дешевыми являются пассивные системы теплоснабжения, которые для сбора и распределения солнечной энергии используют специальным образом сконструированные архитектурные или строительные элементы зданий сооружений и не требуют дополнительного специального оборудования.
В настоящее время наибольшее распространение получают активные системы теплоснабжения со специально установленным оборудованием для сбора, хранения и распространения энергии солнца, которые по сравнению с пассивными позволяют значительно повысить эффективность использования солнечной энергии, обеспечить большие возможности регулирования тепловой нагрузки и расширить область применения солнечных систем теплоснабжения в целом.
Плоские солнечные коллекторы являются простейшим и наиболее дешевым способом использования солнечной энергии. Плоский солнечный коллектор представляет собой теплоизолированный с тыльной стороны и боков ящик, внутри которого помещена тепловоспринимающая металлическая или пластиковая панель, окрашенная для лучшего поглощения солнечного излучения в темный цвет и закрытая сверху светопрозрачным ограждением (один или два слоя стекла или прозрачного стойкого под воздействием ультрафиолета пластика). Панель является теплообменником, по каналам которого прокачивается нагреваемая вода. Вода направляется в теплоизолированный бак гидравлически соединенный с солнечным коллектором. За день вода из бака может несколько раз проходить через коллектор, нагреваясь до расчетного уровня температуры, зависящего от соотношения между объемом бака и площадью солнечного коллектора, а также от климатических условий. Циркуляция воды в замкнутом контуре солнечный коллектор - бак - солнечный коллектор может осуществляться принудительно с помощью небольшого циркуляционного насоса или естественным образом за счет разности гидростатических давлений в столбах холодной и нагретой воды. В последнем случае бак должен располагаться выше верхней отметки солнечного коллектора.
Солнечные фотоэлектрические установки осуществляют прямое преобразование энергии солнечного излучения в электроэнергию с помощью фотопреобразователей.
Солнечная фотоэлектрическая установка состоит из солнечных батарей в виде плоских прямоугольных поверхностей, работа которых состоит в преобразовании энергии солнечного излучения в электрическую энергию. Электрический ток в фотоэлектрическом генераторе возникает в результате процессов, происходящих в фотоэлементах при попадании на них солнечного излучения. Наиболее эффективны фотоэлектрические генераторы, основанные на возбуждении электродвижущей силы (ЭДС) на границе между проводником и светочувствительным полупроводником (например, кремний) или между разнородными проводниками.
Наибольшее распространение получили солнечные фотоэлектрические установки на основе кремния трех видов: монокристаллического, поликристаллического и аморфного.
Для фотопреобразователей из монокристаллического кремния в лабораторных условиях на опытных образцах достигнут кпд 24%. На малых опытных модулях - 18%. Для поликристаллического кремния эти рекордные значения равны 17 и 16 %, для аморфного кремния на опытных модулях достигнуты кпд около 11 %.
Все эти данные соответствуют так называемым однослойным фотоэлементам. Кроме того, используются двух- и трехслойные фотоэлементы, которые позволяют использовать большую часть солнечного спектра по длине волны солнечного излучения. Для двухслойного фотоэлемента на опытных образцах получен КПД 30%, а для трехслойного 35-40%.
Солнечные лучи, которые достигают поверхности Земли, подразделяют на два вида: прямые и рассеянные. Прямые солнечные лучи – это те, которые берут начало у поверхности Солнца и достигают поверхности Земли. Мощность прямого солнечного излучения зависит от чистоты (ясности) атмосферы, высоты Солнца над линией горизонта (зависит от географической широты и времени дня), а также от положения поверхности по отношению к Солнцу. Рассеянные солнечные лучи поступают из верхних слоев атмосферы и зависят от того, каким образом прямые солнечные лучи отражаются от Земли и окружающей среды. Благодаря повторяющемуся процессу отражения между покрытой снегом поверхностью Земли и нижней стороной облаков мощность рассеянного солнечного излучения может достигать больших значений.
Солнечные лучи несут с собой неиссякаемый поток энергии. Они постоянно доставляют на Землю большее количество энергии, чем нам сегодня необходимо. Плотность солнечных лучей в космосе составляет примерно 1,4 кВт / м2. Из них около 30% отражается назад в космос, так и не достигнув Земли. На земной поверхности плотность солнечных лучей составляет около 1 кВт / м2. Солнечная энергия, достигшая поверхности Земли, несет с собой тепло, испаряет воду, образует ветер и движение воды в морях и океанах, дает жизнь растениям.
Та солнечная энергия, которая непосредственно не поглощается на Земле, отражается в космос. Земля находится в постоянном тепловом балансе с окружающей ее средой. Если бы этого не происходило, то Земля нагревалась бы все сильнее и в результате всякая жизнь на ней оказалась бы невозможной.
Ресурсы солнечной энергии велики, если не сказать неограниченны. Проблема заключается в том, что наибольшее количество солнечной энергии поступает летом, то есть в то время, когда потребность в ней минимальна. Зимой же, когда требуется большое количество энергии, Солнце светит только короткое время днем, да и то под низким углом. Выход один: надо накапливать энергию летом и использовать ее зимой.
Опыт скандинавских стран показывает, что применение солнечных установок может быть эффективным для целей теплоснабжения. Однако, для обеспечения круглогодичного отопления потребителей за счет солнечной энергии необходимо накапливать энергию в значительных количествах в летнее время. В качестве аккумулятора теплоты могут быть использованы как подземные резервуары (опыт Швеции), так и наземные емкости, хорошо теплоизолированные от окружающей среды.