Свойства соединений циркония и гафния.
Соединения с кислородом.
Оксиды циркония и гафния.
Цирконий образует только один стабильный оксид ZrO2, есть сведения об образовании еще одного, но нестабильного оксида ZrO. Диоксид циркония обладает высокой стабильностью (tпл= 2690°С), твердостью 6,5 – 8,5 по Моосу, низкой химической активностью. По этим свойствам диоксиды циркония и гафния чрезвычайно схожи.
В системе цирконий – кислород образуется твердый раствор внедрения кислорода в a-Zr, при этом растворимость кислорода составляет 29 ат.% для b-Zr она меньше. Для гафния растворимость кислорода не превышает 20,5%. Диоксид циркония имеет три высокотемпературные полиморфные модификации: моноклинная (область существования 1000-1050°С), тетрагональная (область существования 1900 - 2300°С) и кубическая (тип флюорита). Переход аморфного диоксида циркония в моноклинную кристаллическую решетку протекает при температуре 450-500°С, остальные переходы обратимые и протекают соответственно при температурах 1100 и >2300°С. При переходе от моноклинной к тетрагональной решетке происходит уменьшение объема на 7,5 – 7,7%, что делает невозможным использование этого диоксида циркония в качестве огнеупорного материала. В кристаллической решетке диоксида циркония и диоксида гафния у цркония (Hf) координационное число 8, а у кислорода – 4, т.е. каждый атом циркония связан с восемью атомами кислорода и соответственно каждый атом кислорода с четырьмя атомами циркония.
Диоксид циркония образует твердые растворы с оксидами кальция (CaO), иттрия (Y2O3) (рис.1), ниодима (Nd2O3), скандия (Sc2O3) и др. при определенных концентрациях оксидов (до 16 – 30 от.%) во всем температурном интервале. При этом кубической решетки диоксида циркония стабилизируется. Это происходит потому, что в твердом растворе большие по размеру ионы кальция (Ca2+) и лантаноидов (La3+) занимают место иона циркония (Zr4+), электронейтральность кристалла сохраняется за счет образования кислородных вакансий. При этом увеличиваются параметры кристаллической решетки и соответственно стабильность решетки. Кроме этого наличие анионных вакансий приводит к увеличению подвижности ионов кислорода и в электрическом поле кристаллы обладают ионной проводимостью (твердые электролиты).
Рис.1
Диаграмма ZrO2 – Y2O3
Диоксид гафния также как и диоксид циркония имеет три полиморфные модификации: моноклинную, тетрагональную и кубическую. При этом переходы протекают при температурах несколько выше, чес у диоксида циркония – 1650 и >2500°С.
Как уже выше отмечалось, диоксиды циркония и гафния обладают низкой химической активностью.
Диоксид ZrO2 не реагирует с водой, концентрированными соляной HCl и азотной HNO3 кислотами. Взаимодействует с концентрированной плавиковой и серной кислотами. С расплавленными щелочами ZrO2 реагирует с образованием солей — цирконатов:
ZrO2 + 2КOH = К2ZrO3 + H2O (11)
Диоксид HfO2 не растворяется в воде, концентрированных соляной и азотной кислотах, но взаимодействует с концентрированной плавиковой и серной кислотами. С расплавленными щелочами HfO2 реагирует с образованием солей — гафнатов:
HfO2 + 2NaOH = Na2HfO3 + H2O (12)
Гидроксиды циркония и гафния.
Гидроксиды циркония и гафния получают осаждением из растворов при рН=1,9-2,5 для циркония и 2,1-2,9 для гафния. Свежеосажденные гелеобразные гидроксиды быстро стареют из-за потери воды. Это приводит к снижению растворимости в кислотах. Эмпирическая формула гидроксидов – Zr(Hf)O(OH)2xH2O. Т.е. по существу эти соединения можно назвать гидроксид-оксид. Все явления, которые происходят при гидролизе растворов циркония и гафния и осаждении их гидроксид-оксидов имеют тот же характер, что и для титана и могут быть объяснены с тех же позиций. Однако нужно отметить следующее:
- цирконий и гафний имеют более выраженные металлические свойства;
- имеют большую склонность к (полимеризации) комплексообразованию.
Поэтому:
- в растворах в определенных условиях (растворы HClO4>2моль/л, сМ = 10-4моль/л) существуют ионы [M(H2O)x]4+. В присутствии ионов комплексообразователей ( NO3-, Cl- и др.) образуются комплексные катионы [M(NO3)]3+,[M(NO3)2]2+, а при уменьшении кислотности появляются ионы [M(OH)]3+. В разбавленных растворах солей преимущественно [M(OH)3]+. О наличии в растворах иона цирконила данных нет.
В концентрированных растворах, наряду с гидролизом протекают процессы гидролитической полимеризации и образования оловых соединений. Однако эти процессы не заходят так глубоко как в случае титана. В растворах солей циркония и гафния наиболее вероятно существование димерных, тримерных и тетрамерных комплексных катионов с эмпирической формулой [Zr4(OH)8(H2O)16]+8 (хлориды, бромиды, сульфаты), имеющих определенную структуру (рис 2.).
Рис.2
Структура комплексного катиона [Zr4(OH)8(H2O)16]+8
Структура в ряде случаев сохраняется и в твердых солях (хлориды). При гидролизе, даже при нагревании раствора осадки гидроксидов, как правило, не образуются. Исключение составляют нитратные растворы, в которых образуются цепочечные полимеры, а при нагревании наблюдается частичное выпадение циркония в виде гидроксидов.
В присутствии сильных комплексообразователей – лимонной, винной кислот и др. гидроксид не осаждается, даже из сильно щелочных растворов.
Твердые соединения циркония и гафния (ZrOCl28H2O, Zr(SO4)24H2O, xZrO2ySO3zH2O) при обработке растворами аммиака или щелочей (NaOH, KOH) превращаются в маловодные гидроксиды, содержащие до 65-70% диоксида циркония или 70-75% диоксида гафния. Маловодные гидроксиды, полученные по указанной методике, представляют собой мелкодисперсные хорошо фильтруемые порошки, медленно стареющие на воздухе и сохраняющие длительное время способность растворяться в концентрированных кислотах.
Необходимо отметить, что при старении гидроксидов циркония и гафния наблюдаются те же явления, что и при старении гидроксида титана.
При нагревании гидроксидов циркония вначале они переходят в аморфный диоксид циркония, а затем при температуре 400-500°С в тетрагональную (метастабильную) модификацию диоксида циркония и при дальнейшем повышении температуры до 600°С в моноклинную модификацию.
Гидроксид гафния сразу при температуре 520-540°С переходит в моноклинную модификацию диоксида гафния, вследствие меньшей склонности к образованию метастабильных фаз.
Гидроксиды циркония обладают ионообменными свойствами в зависимости от среды – катионообменными или анионообменными, которые усиливаются, если в структуре они содержат анионы многоосновных кислот, в особенности PO4-3. Ионообменники на основе гидроксида циркония имеют более высокую механическую прочность, большую емкость, устойчивость к действию кислот и щелочей, радиации при температурах до 200°С, чем ионообменные смолы.
Цирконаты и гафнаты.
При сплавлении или спекании диоксидов циркония или гафния с гидроксидами или карбонатами щелочных металлов образуются цирконаты или гафнаты общей формулой mM2nZr(Hf)O3, где m=1, n=1-3. Эти соединения медленно гидролизуются водой, а разбавленными кислотами разлагаются полностью. С оксидами щелочеземельных металлов и свинца образуют соединения 1:1 - MIIZr(Hf)O3, которые относятся к группе сложных оксидов. Эти соединения отличает высокая температура плавления и химическая устойчивость. Разлагаются они только кислотами. С оксидами РЗЭ образуются соединения M2IIIZr(Hf)2O7 – большинство этих соединений плавятся конгруэнтно при температуре 2200-2700°С.
При нагревании диоксида циркония или диоксида гафния с оксидами элементов, не являющихся донорами электронов, образуются соединения, в которых цирконий (гафний) и кремний занимают равноценное положение. Например ZrSiO4 (HfSiO4). Основа структуры – кремнекислородные тетраэдры, а плоскоси данную структуру можно изобразить следующей схемой:
Межатомные расстояния Zr (Hf) – O и Si – O близки между собой, поэтому такого типа соединения нельзя рассматривать, как состоящие из ионов Zr4+ и SiO44-.
Такое строение и такой характер связей обуславливают высокую устойчивость и химическую стойкость циркона и гафнона. Диссоциация на диоксид циркония (гафния) и диоксид кремния начинается при температуре 1540°С (заметная летучесть диоксида кремния – при температуре 1900°С). При обычной температуре на циркон не действуют никакие реагенты, только метаморфизированные цирконы растворяются в плавиковой и частично в серной кислотах. В системах состоящих из диоксидов циркония, кремния и оксидов щелочных или щелочеземельных металлов образуются цирконосилликаты различного состава:
В системе ZrO2-SiO2-Na2O три соединения – Na2ZrSi2O7, Na2ZrSiO5 и Na4Zr2Si3O12 плавящихся инконгруэнтно, имеют ионную природу (сложный анион), сравнительно легко разлагаются кислотами.
В системе ZrO2-SiO2-CaO два соединения – Ca3ZrSi2O9, Ca4ZrSi4O12, более устойчивые, плавящиеся конгруэнтно. Разложение кислотами протекает медленнее.