Матричная модель производственной программы предприятия
Предприятие состоит из n цехов. Каждый цех выпускает только один вид продукции. Пусть j-й цех выпускает xj единиц продукции, из которых yj единиц отправляет за пределы предприятия как товарную продукцию, а остающаяся часть используется другими цехами предприятия.
Пусть ajk – кол-во продукции j-го цеха, расходуемое на производство единицы продукции k-го цеха. Числа aij образуют матрицу А коэффициентов прямых затрат, называемую структурной. Производственная программа предприятия представляется вектором X(x1, … , xn), а выпуск товарной продукции – вектором У(у1, … , уn). (Е - А)Х = У или Х = (Е - А)-1У.
Элементы любого столбца матрицы (Е - А)-1, называемой матрицей коэффициентов полных затрат, показывают затраты всех цехов, необходимые для обеспечения выпуска единицы товарного продукта того цеха, номер которого совпадает с номером данного столбца.
При заданном векторе У выпуска товарной продукции легко определить производственную программу Х и наоборот.
|
0,2 | 0,2 | ||
0,3 | |||
0,1 | 0,3 | ||
0,3 | 0,2 | 0,1 |
B*Q =
H*Y = (Полные затраты всех ресурсов)
Вектор производственной программы X =
Необходимые на весь объем товарной продукции значения (вектор У) =
Принятие решений в условиях неопределенности
Предположим, что рассматривается несколько возможных решений . Ситуация неопределена, наличествует какой-то из вариантов . Если будет принято -e решение, а ситуация есть -я , то фирма получит доход . Матрица называется матрицей последствий (возможных решений).
Допустим, мы хотим оценить риск, который несет -e решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Т.е. если ситуация есть -я , то было бы принято решение, дающее доход .
Значит, принимая -e решение мы рискуем получить не , а только , значит принятие -го решения несет риск недобрать . Матрица называется матрицей рисков.
Матрица последствий есть
0 2 10 28
-6 -5 -1 8
Q= 0 16 32 40
-6 2 10 14
Составим матрицу рисков.
Имеем q1=0;q2=16;q3=32;q4=40. Следовательно, матрица рисков есть
Принятие решений в условиях полной неопределенности.
Не все случайное можно "измерить" вероятностью. Неопределенность – более широкое понятие. Уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера. Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации.
Правило Вальда (правило крайнего пессимизма). Рассматривая -e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход . Выберем решение с наибольшим . Итак, правило Вальда рекомендует принять решение , такое что
Так, в вышеуказанном примере, имеем a1=0; a2= -6; a3=0; a4= -6. Теперь из этих чисел находим максимальное. Правило Вальда рекомендует принять 1-е или 3-е решение.
Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков . Рассматривая -e решение будем полагать, что на самом деле складывается ситуация максимального риска
Выберем решение с наименьшим . Итак, правило Сэвиджа рекомендует принять решение , такое что
Так, имеем b1=22; b2=33; b3=0; b4=26 Теперь из этих чисел находим минимальное. Это – 0. Значит правило Сэвиджа рекомендует принять 3-е решение.
Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение , на котором достигается максимум
где . Значение выбирается из субъективных соображений. Если приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении к 0, правило Гурвица приближается к правилу "розового оптимизма". При правило Гурвица рекомендует:
½(0)+1/2*22=11
½(-6)+1/2*33=13,5
½(0)+1/2*0=0
½(-6)+1/2*26=10 2-е решение.