Производство алюминия технической чистоты
Электролитический способ — единственный применяющийся во всем мире для производства металлического алюминия технической чистоты. Все другие способы (цинкотермический, карбидотермический, субхлоридный, нитридный и др.), с помощью которых алюминий может быть извлечен из алюминиевых руд, разрабатывались в лабораторном и опытно-промышленных масштабах, однако пока не нашли практического применения.
Для получения алюминиево-кремниевых сплавов успешно применяется электротермический способ, впервые разработанный и осуществленный в промышленном масштабе в СССР. Он состоит из двух стадий: на первой стадии получают первичный алюминиево-кремниевый сплав с содержанием 60-63 % Al путем прямого восстановления алюмо-кремнистых руд в рудно-термических электрических печах; на второй стадии первичный сплав разбавляют техническим алюминием, получая силумин и другие литейные и деформируемые алюминиево-кремниевые сплавы. Ведутся исследования по извлечению из первичного сплава алюминия технической чистоты.
В целом получение алюминия электролитическим способом включает в себя производство глинозема (окиси алюминия) из алюминиевых руд, производство фтористых солей (криолита, фтористого алюминия и фтористого натрия), производство углеродистой анодной массы, обожженных угольных анодных и катодных блоков и других футеровочных материалов, а также собственно электролитическое производство алюминия, которое является завершающим этапом современной металлургии алюминия.
Характерным для производства глинозема, фтористых солей и углеродистых изделий является требование максимальной степени чистоты этих материалов, так как в криолитоглиноземных расплавах, подвергающихся электролизу, не должны содержаться примеси элементов, более электроположительных, чем алюминий, которые, выделяясь на катоде в первую очередь, загрязняли бы металл.
В глиноземе марок Г-00, Г-0 и Г-1, которые преимущественно используются при электролизе, содержание SiO2составляет 0,02-0,05%, aFe2 O3 — 0,03-0,05%. В криолите в среднем содержится 0,36-0,38% SiO2 и 0,05-0,06% Fe2 O3 , во фтористом алюминии 0,30-0,35% (SiO2 + Fe2 O3 ). В анодной массе содержится не более 0,25% SiO2и 0,20% Fe2 O3 .
Важнейшая алюминиевая руда, из которой извлекают глинозем, боксит. В боксите алюминий присутствует в форме гидроокиси алюминия. В Советском Союзе, кроме боксита, для получения глинозема применяют нефелиновую породу — алюмосиликат натрия и калия, а также алунитовую породу, в которой алюминий находится в виде его сульфата. Сырьем для изготовления анодной массы и обожженных анодных блоков служат углеродистые чистые материалы — нефтяной или пековый кокс и каменноугольный пек в качестве связующего, а для производства криолита и других фтористых солей — фтористый кальций (плавиковый шпат).
При электролитическом получении алюминия глинозема Al2 O3 , растворенный в расплавленном криолите Na3AlF6 , электрохимически разлагается с разрядом катионов алюминия на катоде (жидком алюминии), а кислородсодержащих ионов (ионов кислорода) — на углеродистом аноде.
По современным представлениям, криолит в расплавленном состоянии диссоциирует на ионы и : , а глинозем — на комплексные ионы и : , которые находятся в равновесии с простыми ионами: , .
Основным процессом, происходящим на катоде, является восстановление ионов трехвалентного алюминия: Al3+ + 3e → Al (I).
Наряду с основным процессом возможен неполный разряд трехвалентных ионов алюминия с образованием одновалентных ионов: Al3+ + 2e → Al+ (II) и, наконец, разряд одновалентных ионов с выделением металла: Al+ + e→ Al (III).
При определенных условиях (относительно большая концентрация ионов Na+ , высокая температура и др.) может происходить разряд ионов натрия с выделением металла: Na+ + e → Na (IV). Реакции (II) и (IV) обусловливают снижение выхода алюминия по току.
На угольном аноде происходит разряд ионов кислорода: 2O2– – 4e → O2 . Однако кислород не выделяется в свободном виде, так как он окисляет углерод анода с образованием смеси CO2 и CO.
Суммарная реакция, происходящая в электролизере, может быть представлена уравнением Al2 O3 + x C ↔ 2Al + (2x –3)CO + (3–x )CO2 .
В состав электролита промышленных алюминиевых электролизеров, помимо основных компонентов — криолита, фтористого алюминия и глинозема, входят небольшие количества (в сумме до 8-9%) некоторых других солей — CaF2 , MgF2 , NaCl и LiF (добавки), которые улучшают некоторые физико-химические свойства электролита и тем самым повышают эффективность работы электролизеров. Максимальное содержание глинозема в электролите составляет обычно 6-8%, снижаясь в процессе электролиза. По мере обеднения электролита глиноземом в него вводят очередную порцию глинозема. Для нормальной работы алюминиевых электролизеров отношение NaF: AlF3 в электролите поддерживают в пределах 2,7-2,8, добавляя порции криолита и фтористого алюминия.
В производстве алюминия применяют электролизеры с самообжигающимися угольными анодами и боковым или верхним подводом тока, а также электролизеры с предварительно обожженными угольными анодами. Наиболее перспективна конструкция электролизеров с обожженными анодами, позволяющая увеличить единичную мощность агрегата, снизить удельный расход электроэнергии постоянного тока на электролиз, получить более чистый металл, улучшить санитарно-гигиенические условия труда и уменьшить выбросы вредных веществ в атмосферу.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ И ПОКАЗАТЕЛИ РАБОТЫ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ
Первичный алюминий, извлекаемый из электролизеров (алюминий-сырец), содержит ряд примесей, которые можно подразделить на три группы: неметаллические (фтористые соли, α- и γ-глинозем, карбид и нитрид алюминия, угольные частицы, механически увлекаемые при выливке металла из электролизера); металлические (железо, кремний), переходящие из сырья, угольных материалов и конструктивных элементов электролизера; газообразные — преимущественно водород, который образуется в металле в результате электролитического разложения воды, попадающей в электролит с сырьем.
Из металлических примесей, помимо железа и кремния, содержится наибольшее количество галлия, цинка, титана, марганца, натрия, ванадия, хрома, меди.
Основным источником поступления металлических микропримесей в алюминий является глинозем, который в зависимости от вида исходного сырья может содержать галлий, цинк, калий, фосфор, серу, ванадий, титан и хром. Углеродистые материалы (анодная масса, обожженные аноды, катодные изделия) служат источником таких микропримесей, как, например, ванадий, титан, марганец, цинк.
Электролизом криолито-глиноземных расплавов при условии применения чистых исходных материалов (в первую очередь глинозема и углеродистых материалов) удается получить алюминий-сырец марок А85 и А8 (99,85 и 99,80%). Наибольшая доля металла этих марок (60-70 % от общего выпуска) получается на электролизерах с обожженными анодами, а также на электролизерах с боковым подводом тока (до 70 % от общего производства). На электролизерах с самообжигающимися анодами и верхним токоподводом выпуск алюминия-сырца марки А8 невысок (составляет 1-3%), а металл марки А85 получить не удается из-за значительных примесей железа, поступающего в алюминий из несырьевых источников (анодные штыри, чугунные секции газосборников, технологический инструмент, катодный узел).
Расплавленный первичный алюминий, извлеченный из электролизеров с помощью вакуумного ковша, поступает в литейное отделение для рафинирования от неметаллических и газовых примесей и дальнейшей переработки в товарную продукцию (чушки, цилиндрические и плоские слитки, катанку и т. п.). Перед разливкой алюминий-сырец выдерживают в расплавленном состоянии в электрических печах сопротивления (миксерах) или в газовых отражательных печах. В этих печах не только проводят рациональную шихтовку различных по составу порций жидкого алюминия, но и частично очищают от неметаллических включений, окисных пленок и натрия.
Разливка алюминия из миксера в чушки производится с помощью литейных машин конвейерного типа; цилиндрические и плоские слитки изготавливают методом полунепрерывного литья, а для получения катанки применяют специальные агрегаты совмещенного литья и прокатки.
На отечественных алюминиевых заводах при литье слитков алюминий, поступающий из миксера в кристаллизатор литейной машины, подвергают простейшему виду рафинирования — фильтрации расплава через стеклосетку с ячейками размером от 0,6×0,6 до 1,7×1,7 мм. Этот метод позволяет очищать алюминий только от очень грубых окисных включений; более совершенен метод фильтрации расплава через стеклосетку в восходящем потоке. При таком способе фильтрования частицы окисных включений, сталкиваясь с сеткой, не захватываются потоком расплава, а осаждаются на дне литейного желоба.
Для одновременной очистки алюминия, как от неметаллических примесей, так и от водорода успешно применяется метод фильтрации через флюсовый фильтр в сочетании с продувкой азотом. В качестве флюса можно использовать кислый электролит алюминиевых электролизеров. В результате такой очистки содержание водорода в алюминии снижается с 0,22 до 0,16 см3 на 100 г металла.
В первичном алюминии, используемом для производства сплавов системы Al—Mg, содержание натрия не должно превышать 0,001 %. Это связано с тем, что присутствие натрия в этих сплавах ухудшает механические и другие эксплуатационные свойства изделий, применяемых в ряде отраслей народного хозяйства.
Наиболее эффективным методом одновременного рафинирования алюминия от натрия, водорода и неметаллических примесей является продувка расплавленного металла газовой смесью азота с 2-10% хлора, вводимой в расплав в виде мелких пузырей с помощью специальных устройств. Этот способ рафинирования позволяет снизить содержание натрия в алюминии до 0,0003—0,001% при расходе газовой смеси от 0,8 до 1,5 м3/т металла.
Расход электроэнергии на производство 1 т товарного алюминия из металла-сырца при использовании электропечей составляет 150-200 кВтּч; безвозвратные потери металла на литейном переделе равны 1,5-5 % в зависимости от вида товарной продукции.