Роль молока и молочных продуктов

ОГЛАВЛЕНИЕ

Введение ……………………………………………… …….
Лекция 1. Роль молока и молочных продуктов в питании населения …………………………………….........................  
1.1 Краткая история развития биохимических исследований молока и молочных продуктов .........................  
1.2 . Роль молока и молочных продуктов в питании населения ……………………………………………….  
Лекция 2. Химический состав молока ……………………
2.1 Средний химический состав молока…………
2.2 Вода в составе молока ………………………….
Лекция 3. Белки молока ……………………………………
3.1 Общая характеристика, аминокислотный состав и структура белков …………………………………….  
3.2 Классификация белков молока ……………….
3.3 Казеин ………………………………………….
3.4 Сывороточные белки …………………………
3.5 Белки оболочек жировых шариков …………..
Лекция 4. Молочный жир ………………………………….
4.1 Общая характеристика липидов ……………...
4.2 Характеристика молочного жира ……………..
4.3 Фосфолипиды, стеарины и другие липиды ….
Лекция 5.Углеводы молока ……………………………….
5.1 Общая характеристика углеводов …………….
5.2 Молочный сахар ……………………………….
5.3 Другие углеводы молока ……………………..
Лекция 6.Минеральные вещества в составе молока …….
Лекция 7.Ферменты в составе молока …………………...
7.1 Оксидоредуктазы ………………………………
7.2 Гидролитические и другие ферменты ………..
Лекция 8. Витамины в составе молока …………………...
8.1 Жирорастворимые витамины …………………
8.2 Водорастворимые витамины ………………….
Лекция 9. Гормоны и газы. Посторонние химические вещества ……………………………………………………..  
9.1 Гормоны и газы ………………………………...
9.2 Посторонние химические вещества …………
Лекция 10. Состояние составных частей молока ………..
10.1 Казеин …………………………………………
10.2 Молочный жир ………………………………..
10.3 Соли кальция ………………………………….
Лекция 11. Свойства коровьего молока …………………..
11.1 Физико-химические свойства ………………..
11.2 Органолептические свойства ………………...
11.3 Технологические свойства …………………...
Лекция 12. Изменение химического состава молока под влиянием различных факторов …………………………….  
12.1 Зоотехнические факторы ……………………..
12,2 Фальсификация молока ……………………….
Лекция 13. Биохимические и физико-химические изменения молока при холодильной обработке ………………..  
13.1 Охлаждение …………………………………..
13.2 Замораживание ……………………………….
Лекция 14. Биохимические и физико-химические изменения молока при механической обработке …………  
14.1 Центробежная очиска и сепарирование …….
14.2 Перекачивание и перемешивание ……………
14.3 Мембранные методы обработки ……………..
14.4 Гомогенизация ………………………………...
Лекция 15. Изменение составных частей молока при тепловой обработке …………………………………………..  
15.1 Белки молока …………………………………..
15.2 Соли молока …………………………………..
15.3 Молочный сахар ………………………………
15.4 Молочный жир ………………………………..
15.5 Витамины и ферменты ………………………..
Лекция 16. Биохимические и физико-химические процессы при производстве кисломолочных продуктов .........  
16.1 Брожение молочного сахара …………………
16.2 Коагуляция казеина и гелеобразование …….
16.3 Влияние состава молока, бактериальных заквасок и других факторов на брожение лактозы и коагуляцию казеина ……………………………………………….    
Лекция 17. Биохимические основы производства отдельных видов кисломолочных продуктов ……………………  
17.1 Кисломолочные напитки ……………………
17.2 Сметана ……………………………………….
17.3 Творог ………………………………………...
Лекция 18. Физико-химические процессы при выработке мороженого ………………………………………………….  
Лекция 19.Биохимические и физико-химические процессы при производстве сыра …………………………  
19.1 Сычужное свертывание молока ……………..
19.2 Биохимические и физико-химические процессы при обработке сгустка и сырной массы ………..  
Лекция 20. Биохимические и физико-химические процессы при созревании сыров …………………………...  
20.1 Изменение составных частей молока ……….
20.2 Изменение содержания влаги и минеральных веществ ………………………………………  
20.3 Формирование структуры, консистенции и рисунка сыра ………………………………………………...  
20.4 Образование вкусовых и ароматических веществ сыра …………………………………………………..  
Лекция 21. Физико-химические процессы при производстве плавленых сыров …………………………… ………..  
Лекция 22.Биохимические и физико-химические процессы при производстве масла……………………………..  
22.1 Производство масла методом сбивания сливок ……………………………………………………………  
22.2 Производство масла методом преобразования высокожирных сливок …………………...  
22.3 Влияние режимов подготовки сливок на процессы маслообразования ………………………………  
Лекция 23. Изменение масла в процессе хранения ……
23.1 Порча жира ……………………………………
23.2 Факторы, влияющие на стойкость масла при хранении …………………………………………………….  
Лекция 24. Физико-химические процессы при производстве молочных консервов и ЗЦМ ………………………….  
24.1 Сгущенное молоко с сахаром ………………..
24.2 Сгущенное стерилизованное молоко ……….
24.3 Сухие молочные продукты и ЗЦМ ………….
Лекция 25. Биохимические основы производства детских молочных продуктов ………………………………………..  
25.1 Состав и свойства женского молока …………
25.2 Методы приближения молочных смесей к женскому молоку ……………………………………………  
Лекция 26. Физико-химические процессы при производстве молочно-белковых концентратов и молочного сахара …………………………………..........................................    
26.1 Молочно-белковые концентраты …………….
26.2 Молочный сахар ………………………………
Список литературы …………………………………………

.





ВВЕДЕНИЕ

Биологическая химия, или биохимия - наука, изучающая химический состав организ­мов и химические процессы, лежащие в основе их жизнедеятельности.

Одной из важнейших составных частей биологической химии, зани­мающейся изучением биохимических процессов, протекающих в сырье растительного и животного происхождения при его хранении и перера­ботке, является техническая биохимия, в частности, биохимия молока, биохимия мяса, биохимия зерна и т. д.

В основе производства молочных продуктов лежат биохимические превращения основных составных частей молока - углеводов, белков, липидов и солей. В связи с этим в курсе «Биохимия молока и молочных продуктов» значительное место отведено изучению состава молока с рас­смотрением химической природы, структуры, биологической ценности, функциональных свойств, а также биохимических изменений компонен­тов молока в процессе его хранения и переработки.

Большое внимание уделяется биохимическим и физико-химическим процессам, протекающим в молоке при выработке основных молочных продуктов, предотвращению возникновения различных пороков, сниже­нию потерь сырья и т.д.

Правильная организация и совершенствование технологических про­цессов, улучшение качества и свойств молочных продуктов невозможны без знания основ биохимии молока и молочных продуктов.

При изучении биохимии молока и молочных продуктов используют достижения смежных наук, таких как органическая, физическая и колло­идная химия, физиология, животноводство, биохимия питания и др. Вме­сте с тем, биохимия молока служит научной основой для последующего изучения технологии, микробиологии молока и молочных продуктов.

Конспект лекций предназначен для студентов всех форм обучения по специальности 260303 «Технология молока и молочных продуктов».

Лекция 1

В ПИТАНИИ НАСЕЛЕНИЯ

Лекция 2

ХИМИЧЕСКИЙ СОСТАВ МОЛОКА

Вода в составе молока

Вода выполняет разнообразные функции и играет важную роль в био­химических процессах. Она является растворителем органических и не­органических веществ. В водной среде проходят все многочисленные реакции живого организма. В некоторых реакциях вода принимает не­посредственное участие (реакции гидролиза, окисления веществ и др.).

В молоке содержится в среднем 88 % воды (с колебаниями от 86 до 89 %). Вода, входящая в состав молока и молочных продуктов, неоднородна по физико-химическим свойствам, и роль ее неоди­накова.

Большая часть воды молока (84,5 - 85%) находится в свободном состоянии, т. е. может при­нимать участие в биохимических реакциях. Сво­бодная вода молока представляет собой раствор различных органических и неорганических ве­ществ (сахара, солей и пр.). Ее легко можно пре­вратить в состояние льда при замораживании мо­лока или удалить при сгущении и высушивании.

Меньшая часть (3 - 3,5%) воды находится в связанном состоянии. Существует 2 формы связи воды в молоке:

1. Адсорбционно связанная вода удерживается молекулярны­ми силами около поверхности коллоидных час­тиц (белков, фосфолипидов, полисахаридов). При адсорбировании диполи воды располагают­ся несколькими слоями вокруг гидрофильных центров белковой молекулы (рис.2).

роль молока и молочных продуктов - student2.ru

Рис. 2. Схема гидратной оболочки белковой молекулы:

1 – диполи воды; 2 - белок

Первый слой (ориентированные неподвижные молекулы воды, прочно связанные с белком) на­зывают гидратной или водной оболочкой. От свойств гидратных оболочек зависит стабильность белковых частиц, а также жировых шари­ков молока. Последующие слои молекул воды связаны с белком менее прочными связями, и по свойствам она не отличается от свободной воды.

2. Особая форма связанной воды - химически связанная вода. Это вода кристаллогидратов, или кристаллизационная вода. В молоке кристалли­зационная вода связана с кристаллами молочного сахара (С12Н22011 Н20).

Связанная вода по своим свойствам отличается от свобод­ной. Она не замерзает при низ­ких температурах (ниже - 40°С), не растворяет соли, сахар. Связанную воду нельзя удалить из молока при высушивании. По количеству связанной воды обычно судят о гидро­фильности белков, т.е. способ­ности связывать всю влагу (влагу первого и последующих слоев).

Контрольные вопросы:

1. Каков средний химический состав коровьего молока?

2. Массовые доли каких составных частей молока контролируются на молочных предприятиях?

3. В каком состоянии находится вода в молоке?

Лекция 3

БЕЛКИ МОЛОКА

И структура белков

Белки - высокомолекулярные полимерные соединения, построен­ные из аминокислот. В их состав входит около 53 % углерода, 7% водоро­да, 22% кислорода, 15 - 17% азота и от 0,3 до 3% серы. В некоторых бел­ках присутствуют фосфор, железо и другие элементы.

Все белки в зависимости от их строения и свойств делятся на две груп­пы:

· простые, или протеины (от греч. protos - первый, важнейший) они состоят только из аминокислот;

· слож­ные, или протеиды, в молеку­ле протеидов помимо белковой части имеются соединения небелковой природы.

Белки выполняют многочисленные биологические функции - струк­турную, транспортную, защитную, каталитическую, гормональную и др.

В состав белков входят остатки 20 различных аминокислот. Общая формула аминокислот следующая:

H

R-C-COOH

NH2

Все аминокислоты содержат аминогруппу NH2, имеющую основной характер, и карбоксильную группу СООН, несущую кислые свойства.

Белкам свойственны различные структуры. Последовательность ами­нокислотных остатков в полипептидной цепи называют первичной струк­турой белка (рис. 3, а).Она специфична для каждого белка.

В молекуле белка полипептидная цепь частично закручена в виде α-спирали, витки которой скреплены водородными связями.

роль молока и молочных продуктов - student2.ru роль молока и молочных продуктов - student2.ru

Вид спирали характеризует вто­ричную структуру (рис. 6, б).Возможна также слоисто-складчатая структура.

Пространственное расположение полипептидной цепи определяет тре­тичную структуру белка (рис. 3, в). В зависимости от простран­ственного расположения полипептидной цепи форма молекул белков мо­жет быть различной. Если полипептидная цепь образует молекулу ните­видной формы, то белок называется фибриллярным (от лат. fibrilla - нить), если она уложена в виде клубка - глобулярным (от лат. globulus - шарик).

Рис. 3. Структуры белковых Четвертичная структура харак-

молекул: теризует способ расположения

а) первичная; б) вторичная; в пространстве отдельных поли-

в) третичная; г) четвертичная пептидных цепей в белковой моле-

куле.

Белки обладают большой молекулярной массой (от нескольких ты­сяч до нескольких миллионов). Вследствие большого размера белковых частиц водные растворы их представляют собой коллоидную систему, которая состоит из дисперсионной среды (растворитель) и дисперсной фазы (частицы растворенного вещества).

 

Благодаря присутствию в аминокислотных остатках групп, способ­ных к ионизации (СООН, NH2 и др.), белковые молекулы несут отрица­тельные и положительные заряды. Нарушение этих факторов устойчивости при­водит к осаждению (коагуляции) частиц. Коагуляцию можно осуществить, добавляя в раствор белков дегидра­тирующие вещества (спирт, ацетон, сульфат аммония и некоторые дру­гие соли), разрушающие гидратную оболочку. При этом происходит об­ратимое осаждение белков, т. е. при удалении этих веществ белки вновь переходят в нативное состояние.

При действии на белок солей тяжелых металлов, кислот и щелочей, а также при нагревании происходят необратимые реакции осаждения с потерей первоначальных свойств белка. Это явление называется денату­рацией. Она характеризуется развертыванием полипептидной цепи бел­ка, которая в нативной белковой молекуле была свернута. В ре­зультате развертывания полипептидных цепей на поверхность белковой молекулы выходят гидрофобные группы. При этом белок теряет растворимость, агрегирует и выпадает в осадок.

Классификация белков молока

В молоке содержится в среднем около 3,2% белков, колебания составляют от 2,9% до 3,5%. Белки, входя­щие в состав молока, имеют сложный состав, разнообразны по строению, физико-химическим свойствам и биологическим функциям.

Используя современные способы разделения и выделения белков, исследователи установили, что в состав молока входят три группы бел­ков:

· казеин;

· сывороточные белки;

· белки оболочек жировых шариков.

На рис. 4 представлен фракционный состав белков молока.

Биологические функции белков молока многообразны. Так, казеин яв­ляется собственно пищевым белком, выполняющим в организме новорож­денного структурную функцию. Кроме того, казеин транспортирует в со­ставе своих частиц кальций, фосфор и магний. Транспортные функции так­же выполняют лактоферрин и β-лактоглобулин, иммуноглобулины облада­ют защитными функциями, α-лактальбумин - регуляторными и т. д.

Общий белок 3,2%

Подкисление, рН 4,6

роль молока и молочных продуктов - student2.ru

Осадок: Фильтрат:

роль молока и молочных продуктов - student2.ru казеин 2,6% сывороточные белки 0,6%

Нагревание до 93-95°С, раскисление

Осадок: Фильтрат:

лактоферрин, β-лактоглобулин, протеоз-пептоны 0,06%

иммуноглобулины, α-лактальбумин

0,54% действие

трихлоруксусной кислоты

Рис. 4. Схема фракционного состава белков молока

Казеин

Казеин является главным белком молока, его содержание колеблется от 2,1 до 2,9%. Элементарный состав казеина (в %) следующий: углерод - 53,1; водород - 7,1; кислород - 22,8; азот - 15,4; сера - 0,8; фосфор - 0,8. Он содержит несколько фракций, отличающихся аминокислот­ным составом, отношением к ионам кальция и сычужному ферменту.

В молоке казеин находится в виде специфических частиц, или мицелл, представляющих собой сложные комплексы фракций казеина с коллоидным фосфатом кальция.

Казеин – комплекс 4 фракций: αs1, αs2, β, χ. Фракции имеют различный аминокислотный состав и отличаются друг от лруга заменой одного или двух аминокислотных остатков в полипептидной цепи. αs - и β – Казеины наиболее чувствительны к ионам кальция и в присутствии их они агрегируют и выпадают в осадок. χ - Казеин не осаждается ионами кальция и в казеиновых мицеллах, располагаясь на поверхности, выполняет защитную роль по отношению к чувствительным . αs - и β – казеину. Однако χ – казеин чувствителен к сычужному ферменту и под его воздействием распадается на 2 части: гидрофобный пара -χ-казеин и гидрофильный макропротеид.

Полярные группы, находящиеся на поверхности и внутри казеиновых мицелл (NH2, COOH, ОН и др.), свя­зывают значительное количество воды — около 3,7 г на 1 г белка. Спо­собность казеина связывать воду характеризует его гидрофильные свой­ства. Гидрофильные свойства казеина зависят от структуры, величины заряда белковой молекулы, рН среды, концентрации солей и других фак­торов. Они имеют большое практическое значение. От гидрофильных свойств казеина зависит устойчивость казеиновых мицелл в молоке. Гидрофильные свойства казеина влияют на способность кислотного и кислотно-сычужного сгус­тка удерживать и выделять влагу. Изменение гидрофильных свойств ка­зеина необходимо учитывать при выборе режима пастеризации в про­цессе производства кисломолочных продуктов и молочных консервов. От гидрофильных свойств казеина и продуктов его распада зависят водосвязывающая и влагоудерживающая способность сырной массы при созревании сыров, консистенция готового продукта.

Казеин в молоке содержится в виде сложного комплекса казеината кальция с коллоидным фосфатом кальция, так называемого казеинаткальцийфосфатного комплекса (ККФК). В состав ККФК также вхо­дит небольшое количество лимонной кислоты, магния, калия и натрия.

Сывороточные белки

После осаждения казеина из молока кислотой (при рН 4,6 - 4,7) в сыворотке остается около 0,6 % белков, которые называют сывороточны­ми. Они состоят из |β-лактоглобулина, α-лактальбумина, иммуноглобу­линов, альбумина сыворотки крови, лактоферрина.

β-Лактоглобулин, α-лактальбумин и иммуноглобулины выполняют важные биологические функции и имеют большое промышленное зна­чение, вследствие высокого содержания незаменимых и серосодержащих аминокислот. Из сыворотки их выделяют в нативном состоянии с помо­щью ультрафильтрации и применяют для обогащения различных пище­вых продуктов.

Альбумин сыворотки крови содержится в молоке в незначительных количествах и не имеет практического значения. Лактоферрин, несмот­ря на малое содержание, выполняет важные биологические функции и необходим для организма новорожденного.

β-Лактоглобулин.β-Лактоглобулин составляет 50 - 54% белков сыво­ротки (или 7 - 12% всех белков молока). Он имеет изоэлектрическую точку при рН 5,1. При пастеризации молока денатурированный β-лактоглобулин вместе с Са3(Р04)2 выпадает в осадок в составе молочного камня и образует комп­лексы с χ-казеином казеиновых мицелл (осаждаясь вместе с ними при коагуляции казеина). Он не свертывается сычужным ферментом и не коагулиру­ет в изоэлектрической точке в силу своей большой гидратированности.

α-Лактальбумин. Всывороточных белках α-лактальбумин занимает второе место после β-лактоглобулина (его содержание составляет 20 - 25% сывороточных белков, или 2 - 5% общего количества белков). α-Лактальбумин устойчив к нагреванию, он является самой термо­стабильной частью сывороточных белков. Он является специфическим белком, необходимым для синтеза лактозы из галактозы и глюкозы.

Иммуноглобулины. Вобычном молоке иммуноглобулинов содержит­ся мало, в молозиве они составляют основную массу (до 90%) сыворо­точных белков.

Иммуноглобулины объединяют группу высокомолекулярных белков, обладающих свойствами антител. Антитела - вещества, образующиеся в организме животного при введении в него различных чужеродных белков (антигенов) и нейтрализующие их вредное действие.

Иммуноглобулины молока име­ют большую молекулярную массу (150 000 и выше), в своем составе со­держат углеводы, термолабильны, т. е. коагулируют при нагревании мо­лока до температуры выше 70°С.

Лактоферрин.Представляет собой гликопротеид молекулярной мас­сой около 76 000, содержит железо. В молоке содержится в малых количествах (менее 0,3 мг/мл), в молозиве его в 10 - 15 раз больше.

Лекция 4

МОЛОЧНЫЙ ЖИР

Лекция 5

УГЛЕВОДЫ МОЛОКА

Молочный сахар

Содержание лактозы в молоке коров составляет в среднем 4,6% (4,4 - 4,9%).

Лактоза - дисахарид, построенный из остатков D-глюкозы и D-галактозы, соединенных связью 1→4,

роль молока и молочных продуктов - student2.ru
Остаток галактозы

Остаток глюкозы

α-Лактоза

Лактоза в 5 - 6 раз менее сладкая, чем сахароза, и хуже растворяется в воде.

В молоке молочный сахар находится в двух формах: α и β. При 20°С содержится 40% α-лактозы и 60% β-лактозы. α-Форма менее раствори­ма, чем β-форма. Обе формы могут переходить одна в другую, скорость перехода одной формы в другую зависит от температуры.

Из водных растворов лактоза кристаллизуется с одной молекулой кри­сталлизационной воды в α-гидратной форме. В такой форме ее получают из молочной сыворотки и используют в производстве пенициллина, в пи­щевой и фармацевтической промышленности. Кристаллизация лактозы при выработке сгущенного молока с сахаром - очень важная технологи­ческая операция, обусловливающая качество молочных консервов.

При нагревании молока до температуры выше 100°С (особенно при стерилизации и высокотемпературной обработке) молочный сахар час­тично превращается в лактулозу. Лактулоза отличается от молочного са­хара тем, что содержит вместо остатка глюкозы остаток фруктозы. Лактулоза хорошо растворяется в воде (не кристаллизуется даже в кон­центрированных растворах), в 1,5 - 2 раза более сладкая, чем лактоза. Ее широко применяют в производстве продуктов детского питания, так как кроме перечисленных положительных свойств лактулоза стимулирует развитие бифидобактерий в кишечнике детей. Обычно при выработке сухих молочных продуктов для детского питания используют смесь лактулозы с лактозой - лакто-лактулозу.

При высоких температурах нагревания (160 - 180°С) молочный сахар карамелизуется и раствор лактозы приобретает коричневую окраску. При принятых в молочной промышленности режимах тепловой обработки молока карамелизации лактозы почти не происходит.

Нагревание молока при температуре выше 95°С вызывает его легкое побурение. Оно обусловлено не карамелизацией, а реакцией между лак­тозой, белками и некоторыми свободными аминокислотами (реакция Майара, или Мейлларда). В результате реакции образуются меланоидины (от греч. melanos - черный) - вещества темного цвета с явно выражен­ным привкусом карамелизации. Химический

Молочный сахар под действием разбавленных кислот гидролизуется. При этом он распадается на D-галактозу и D-глюкозу, которые затем превращаются в альдегиды и кислоты. Молочный сахар гидролизуется также под действием лактазы, выделяемой молочнокислыми бактерия­ми, дрожжами и другими микроорганизмами

Брожение. Это процесс глубокого распада молочного сахара (без уча­стия кислорода) под действием ферментов микроорганизмов. При бро­жении молочный сахар распадается на более простые соединения: кис­лоты, спирт, углекислый газ и пр. В результате выделяется энергия, не­обходимая для жизнедеятельности организмов. В зависимости от обра­зующихся продуктов различают молочнокислое, спиртовое, пропионовокислое, маслянокислое и другие виды брожения.

Все виды брожения до образования пировиноградной кислоты идут по одному и тому же пути. На первой стадии молочный сахар под влия­нием лактазы распадается на моносахариды: глюкозу и галактозу (галактоза не подвергается непосредственному брожению и переходит в глюкозу)

С12Н22О112О → С6Н12О6 + С6Н12О6

Лактоза Глюкоза Галактоза

В дальнейшем глюкоза вовлекается в целый рад ферментативных ре­акций. Из каждой молекулы глюкозы образуется две молекулы пировиноградной кислоты.

С6Н12О6 → 2 СН3СОСООН

Лактоза Пировиноградная кислота

Последующие превращения пировиноградной кислоты (в зависимо­сти от вида брожения) идут в разных направлениях, которые определя­ются специфическими особенностями (составом ферментов) микроор­ганизмов.

Молочнокислое брожение - основной процесс при производстве кис­ломолочных продуктов, сыров, кисло-сливочного масла. Спиртовое броже­ние происходит при выработке кефира, кумыса и ацидофильно-дрожжевого молока. Пропионовокислое брожение играет важную роль в созрева­нии сыров с высокой температурой второго нагревания (швейцарский, со­ветский и др.). Маслянокислое брожение при производстве молочных про­дуктов нежелательно, так как является причиной появления в кисломолоч­ных продуктах неприятного вкуса и запаха, а в сырах - вспучивания.

роль молока и молочных продуктов - student2.ru 5.3 Другие углеводы молока

В молоке обнаружены в свободном состоянии моносахариды (глав­ным образом, глюкоза и галактоза) и их фосфорные эфиры.

Моносахариды и их фосфорные эфиры - важнейшие промежуточ­ные соединения процесса синтеза лактозы и других олигосахаридов мо­лока.

Часть моносахаридов молока и их аминопроизводные содержатся в связанном состоянии. Они входят в состав сложных олигосахаридов, χ-казеина, иммуноглобулинов, лактоферрина и др.

В коровьем молоке в виде следов находятся олигосахариды, они выполняют важную специфическую функцию - стимулируют рост бифидобактерий в кишечнике новорожденного. Коровье молоко мно­го беднее этими олигосахаридами по сравнению с женским молоком.

Контрольные вопросы:

1. Напишите формулу лактозы и опишите ее свойства.

2. Основные виды брожения лактозы?

3. Какие углеводы встречаются в молоке?

Лекция 6

МИНЕРАЛЬНЫЕ ВЕЩЕСТВА

В СОСТАВЕ МОЛОКА

Минеральные, или зольные, вещества встречаются в организмах в раз­личных количествах. В зависимости от содержания их разделяют на мак­роэлементы (Са, Р, Mg, Na, К, CI, S) и микроэлементы (Fe, Cu, Zn, I и др.).

Минеральные вещества выполняют разнообразные функции. Они обеспечивают построение костной ткани (Са, Р, Mg), создают осмоти­ческое давление и буферные системы крови (Na, К), входят в состав не­которых гормонов (I, Zn, Cu), ферментов и витаминов (Fe, Co) и т. д.

В золе молока, содержание которой составляет 0,7 - 0,8%, обнаруже­ны следующие элементы: Са, Mg, P, Na, К, CI, S, Fe, Cu, Co, I, F, Mn, Zn и др. (рис. 4). В молоке данные элементы содержатся в виде катионов и анионов, в прочном соединении с органическими веществами (в составе белков, ферментов, нуклеиновых кислот) и др.

Макроэлементы. Среднее содержание наиболее важных макроэлементов в молоке (в мг%) следующее: кальций - 120, фосфор - 95, калий - 140, натрий -50, магний - 12, хлор - 100.

Большое значение для человека, особенно в детском возрасте, имеют соли кальция, поступающие из молока и молочных продуктов.

Кальций находится в молоке в легко усвояемой и хорошо сбаланси­рованной с фосфором форме. Соли кальция имеют огромное значение для процессов переработки молока. Например, недостаточное количе­ство солей (ионов) кальция обусловливает медленное сычужное сверты­вание молока (в сыроделии считается нормальным содержание 125 - 130 мг% кальция в молоке), а их избыток вызывает коагуляцию белков молока при стерилизации.

роль молока и молочных продуктов - student2.ru

Рис. 4. Минеральные вещества молока

Содержание кальция в молоке колеблется от 100 до 140 мг%. Около 22% всего количества кальция прочно связано с казе­ином (от его содержания зависят размер казеиновых мицелл и их устой­чивость), остальные 78% составляют фосфаты и цитраты. Большая часть этих солей (в основном фосфаты кальция) содержится в коллоидном со­стоянии (в виде агрегатов молекул) и небольшая часть (около 30%) - в виде истинного раствора.

Соли калия и натрия содержатся в ионно-молекулярном состоя­нии в виде хорошо диссоциирующих хлоридов, фосфатов и цитратов. Содержание калия в молоке колеблется от 113 до 170 мг%, натрия - от 30 до 77 мг%. Соли калия и натрия имеют большое физиологичес­кое значение. Они создают нормальное осмотическое давление крови и молока и обусловливают их буферную емкость. Кроме того, фосфа­ты и цитраты калия и натрия обеспечивают так называемое солевое равновесие молока, т. е. определенное соотношение между катионами кальция (и магния) и анионами фосфатов и цитратов. Иначе говоря, фосфаты и цитраты калия и натрия регулируют в молоке количество ионизированного кальция, влияющего на размеры и стабильность казеиновых мицелл.

Содержание хлоридов в нормальном молоке колеблется от 80 до 110 мг%. При заболевании животных маститом их количество в молоке резко повышается до 120 - 165 мг% и выше.

Микроэлементы. К ним относят медь, железо, цинк, кобальт, марганец, йод, фтор, се­лен, свинец и некоторые другие элементы.

В молоке микроэлементы связаны с белками и оболочками жировых шариков. Их содержание зависит от рационов кормления, стадии лакта­ции, состояния здоровья животных.

Микроэлементы влияют на пищевую ценность и качество молока и молочных продуктов. Следует отметить, что коровье молоко при высо­кой пищевой ценности содержит мало железа и меди, поэтому при про­изводстве сухих молочных продуктов детского питания в молочную ос­нову добавляют глицерофосфат железа, сульфат меди и другие соли.

Микроэлементы могут попадать в молоко дополнительно после дойки (из воды, оборудования, тары и т. д.). Тогда они отрицательно влияют на качество молочных продуктов. Так, повышенное содержание меди и же­леза приводит к появлению в молоке окисленного привкуса, ускоряет процессы прогоркания и осаливания масла. Увеличенное количество в молоке свинца, кадмия, ртути может представлять угрозу для здоровья человека.

Контрольные вопросы:

  1. Назовите основные макроэлементы молока.
  2. Назовите основные микроэлементы молока.

Лекция 7

ФЕРМЕНТЫ В СОСТАВЕ МОЛОКА

Ферменты (от лат. fermentum - закваска) - биологические катализа­торы, ускоряющие химические реакции в живых организмах. Под дей­ствием ферментов крупные молекулы белков, углеводов, жиров расщеп­ляются на более мелкие.

Ферменты ускоряют реакции в десятки тысяч и миллионы раз. Дей­ствие ферментов строго специфично, т. е. каждый фермент катализирует только одну химическую реакцию. Фермент соответствует своему суб­страту (веществу, химическое превращение которого он катализирует).

Ферменты действуют при определенной температуре, рН среды; их активность зависит от наличия химических веществ - активаторов и ингибиторов. Оп­тимальная температура, т. е. температура, при которой наблюдается мак­симум активности ферментов, для большинства из них равна 40 - 50°С. При дальнейшем повышении температуры активность фермента снижа­ется. При температуре 60-80°С белок, образующий фермент, денатури­рует, и фермент инактивируется (теряет свою активность). При денату­рации белка, как известно, происходит развертывание полипептидной цепи с потерей им биологических свойств.

Тепловая денатурация ферментов имеет важное практическое значе­ние: пастеризация сырья способствует разрушению ферментов и предо­храняет пищевые продукты от ферментативной порчи.

Важным фактором, влияющим на активность ферментов, является рН среды. Ферменты различаются по оптимальным для их действия значе­ниям рН. При слишком кислой или щелочной реакции среды происхо­дит денатурация фермента, и он теряет свою активность.

По химической природе ферменты представляют собой белковые ве­щества. Они могут быть простыми и сложными белками.

Ферменты на­зывают по тому веществу, на которое они действуют, прибавляя к корню названия окончание «аза»: липаза, лактаза, пептидаза и пр. Ферменты подразделяют на шесть клас­сов:

· оксидоредуктазы (ферменты, катализирующие окислительно-вос­становительные реакции);

· трансферазы (ферменты, переносящие груп­пы);

· гидролазы (гидролитические ферменты);

· лиазы (ферменты отщеп­ления групп);

· изомеразы (ферменты изомеризации);

· синтетазы.

Из всех перечисленных классов ферментов наибольшее практичес­кое значение имеют оксидоредуктазы и гидролазы.

Из молока, полученного при нормальных условиях от здорового жи­вотного, выделено более 20 истинных, или нативных, ферментов. Большая их часть образуется в клетках молочной железы и переходит в мо­локо во время секреции. Меньшая часть, переходит в молоко из крови животного.

В молоке ферменты находятся в свободном состоянии, а также связаны с казеиновыми мицеллами и оболочками жировых шариков.

Оксидоредуктазы

Оксидоредуктазы - это большая группа ферментов, катализирующих окислительно-восстановительные реакции в живых организмах. К ним относят дегидрогеназы, оксидазы, пероксидазу и каталазу.

Дегидрогеназы.Эти ферменты клетки молочной железы почти не вы­рабатывают. Разнообразные дегидрогеназы (редуктазы) накапливаются в молоке при размножении в нем бактерий. С увеличением количества бактерий в молоке активность редуктаз, как правило, возрастает. С помощью редуктазной пробы на молочных заводах устанавливают бак­териальную обсемененность принимаемого молока. Дегидрогеназы, вырабатываемые молочнокислыми бактериями и дрож

Наши рекомендации