Нингидриновая реакция на ?-аминокислоты

Для обнаружения и количественного определения аминокислот, находящихся в растворе, можно использовать нингидриновую реакцию.

Эта реакция основана на том, что бесцветный нингидрин, реагируя с аминокислотой, конденсируется в виде димера через атом азота, отщепляемый от ?-аминогруппы аминокислоты. В результате образуется пигмент красно-фиолетового цвета. Одновременно происходит декарбоксилирование аминокислоты, что приводит к образованию СО2 и соответствующего альдегида. Нингидриновую реакцию широко используют при изучении первичной структуры белков (см. схему ниже).

Так как интенсивность окраски пропорциональна количеству аминокислот в растворе, её используют для измерения концентрации ?-аминокислот.

Нингидриновая реакция на ?-аминокислоты - student2.ru

Нингидриновая реакция, используемая для определения ?-аминокислот

Специфические реакции на отдельные аминокислоты

Качественное и количественное определение отдельных аминокислот возможно благодаря наличию в их радикалах особенных функциональных групп.

Аргинин определяют с помощью качественной реакции на гуанидиновую группу (реакция Сакагучи), а цистеин выявляют реакцией Фоля, специфичной на SH-группу данной аминокислоты. Наличие ароматических аминокислот в растворе определяют ксантопротеиновой реакцией (реакция нитрования), а наличие гидроксильной группы в ароматическом кольце тирозина - с помощью реакции Миллона.

Расщепление углеводов в органах пищеварения. Роль ферментов.

УГЛЕВОДЫ

Углеводы — это питательные вещества, присутствующие почти во всех продуктах питания, в основном в пище растительного происхождения. Организм использует их для получения энергии, которую расходует на многочисленные реакции метаболизма: углеводы — это основное «горючее» организма.

ВИДЫ УГЛЕВОДОВ

Углеводы состоят из атомов углерода, кислорода и водорода. Они также называются гидратами углерода, поскольку каждый его атом соединен с атомом кислорода и двумя атомами водорода — в такой же пропорции кислород и водород содержатся в молекулах воды (Н20). Согласно химическому составу и структурным единицам - сахаридам, выделяют основные группы углеводов.

Простые углеводы, или сахара, состоят из одной структурной единицы и называются моносахаридами — например, глюкоза, фруктоза и галактоза; дисахариды состоят из двух структурных единиц — например, пищевой сахар, состоящий из одной молекулы глюкозы и одной молекулы фруктозы. Лактоза — молочный сахар, состоит из молекул глюкозы и галактозы; мальтоза состоит из двух молекул глюкозы. Сложные углеводы называются полисахаридами и состоят из множества простых соединений атомов и молекул, объединенных в длинные цепи, например крахмал и гликоген, присутствующие в растительной пище.


Злаки, корнеплоды и овощи — это продукты, содержащие много углеводов, которые составляют основу рациона человека.

РАСЩЕПЛЕНИЕ УГЛЕВОДОВ В ОРГАНИЗМЕ
Большая часть углеводов, присутствующих в продуктах питания, являются ди- и полисахаридами, но только моносахариды благодаря крошечному размеру могут всасываться через стенки пищеварительного тракта. Поэтому сложные углеводы вступают в реакцию с ферментами, расщепляющими их на структурные единицы — моносахариды. Завершающим этапом процесса пищеварения является усвоение молекул глюкозы, фруктозы и галактозы, которые транспортируются к печени, где превращаются в глюкозу, поступающую в кровь и разносящуюся по всему организму.

ГЛЮКОЗА

Человеческий организм может использовать как источник энергии только один вид углеводов — глюкозу. Молекулы глюкозы, высвобожденные в процессе расщепления сложных углеводов, всасываются в кишечнике или в печени. Глюкоза стоком крови разносится к тканям, где происходит химический процесс высвобождения из нее энергии. Уровень глюкозы в крови настолько важен, что всегда, делая анализ крови, измеряют ее концентрацию, которая называется уровнем сахара в крови, — это индикатор состояния здоровья человека.

Все продукты питания в большем или меньшем количестве содержат углеводы, за исключением тех, которые состоят исключительно из жиров, например масла. Продукты, наиболее богатые глюкозой, — это злаки и их производные, овощи, корнеплоды, фрукты, а также сахар, мед и сладости.

КЛЕТЧАТКА
Целлюлоза (клетчатка) — это сложный углевод, формирующий стенки растительных клеток. У травоядных животных есть пищеварительные ферменты, помогающие переваривать целлюлозу, расщепляя ее на составляющие — молекулы глюкозы, которые всасываются кишечником и используются для пополнения энергетического потенциала. Человеческий организм не вырабатывает ферментов, способных переваривать клетчатку, которую также называют растительными волокнами, выводящимися из нашего организма без изменения. Тем не менее употреблять их очень полезно, и их выведение свидетельствует о хорошей работе толстого кишечника.

Сейчас каждый знает, что ни одно заболевание не проходит без нарушений процессов обмена веществ и, следовательно, нарушений в деятельности ферментов, которая в здоровом организме отличается удивительной согласованностью. У врачей возникла мысль: нельзя ли использовать ускорители химических реакций — ферменты — для предупреждения и лечения болезней. Особенно широко для этих целей стали применяться ферменты, содержащиеся в пищеварительных соках: пепсин, трипсин, химотрипсин.
Для профилактики и лечения используют не только сами ферменты, но и их некоторые небелковые соединения — коферменты. В их состав входят многие известные нам витамины. Достаточно упомянуть о таких витаминах, как В1, витамин В2, никотиновая кислота. Эти и другие коферменты являются наиболее ценными лекарственными веществами в первую очередь потому, что действуют не на признаки болезни, а на ее причины.

Процессы обмена веществ в нашем организме регулируются нервной системой. Естественно поэтому, что и активность ферментов, участвующих в химических превращениях, также зависит от деятельности нервной системы. Наблюдения показывают, что умственное напряжение, волнение, связанное, например, с участием в спортивных соревнованиях, различных конкурсах, сдача экзаменов повышают активность ферментов, расщепляющих белки. А это в свою очередь ведет к тому, что организм начинает расходовать больше белков. Это необходимо учитывать при составлении рациона питания.
Сколько людей мечтает об искусственных питательных веществах в виде небольших таблеток или пилюль, которые бы полностью заменили громоздкую и часто неудобоваримую пищу наших дней. Нельзя ли избавить человека от необходимости потреблять природные пищевые продукы: хлеб, мясо, овощи, фрукты, содержащие не только полезные, но и ненужные, а то и просто вредные вещества, на переваривание которых наш организм затрачивает много энергии.
Но мечты о питательных таблетках, конечно, нереальны. Ближайшие тысячелетия не смогут изменить наше тело, приспособленное на протяжении миллионов лет к сложившимся процессам пищеварения. Однако, создание более удобоваримой пищи — это мечта реальная, она становится явью. Сколько неприятностей доставляет нам жесткое, как подошва, мясо! Но есть чудесный порошок. Достаточно его щепотки, чтобы превратить самый жесткий бифштекс в нежное филе или телятину. Это — препарат фермента папаина, получаемого из плодов культивируемого на юге нашей страны дерева — карика папайя. Не только мясо, но и горох, фасоль, чечевицу можно так размягчить предварительной обработкой ферментом, что на их варку понадобится в 4 раза меньше времени, чем обычно.
Существует много ферментов, которые мы можем уже теперь использовать для предварительной подготовки самых разнообразных пищевых продуктов. В кухне недалекого будущего ферменты призваны сыграть огромную роль. Зная свойства ферментов, человек усилит их действие во много раз. Будут созданы не только фабрики жиров, углеводов, вкусовых и ароматических веществ, но и фабрики-лаборатории, где будут добываться, а впоследствии синтезироваться сами ферменты.

Свойства ферментов.

Белки - это основа жизненных процессов, важнейшая составная часть живого вещества.
Жизнь без этих ускорителей реакций невозможна.
Какими же свойствами обладают ферменты?
Во-первых, их способность резко изменять (обычно в сторону ускорения) темпы химических превращений. Такая высокая активность характерна для биологических катализаторов, действующих в живых организмах
В процессе становления жизни на Земле могли образоваться скопления органических соединений, похожие на известные нам белки. Но процессы в них протекали очень вяло, можно сказать, что жизнь в них едва теплилась. А теперь представьте себе: на кучу тлеющих углей вылили бензин, вспыхнул яркий огонь. Подобным образом действовал на белки и первый фермент. Именно он обеспечил наибольшую скорость химических процессов и сделал белок живым существом любопытное свойство ферментов, как катализаторов, заключается в обратимости химических превращений.
Например, какое-либо вещество распадается, но при определенных условиях продукты этого распада, соединяясь, образуют первичное вещество. Ферменты способствуют не только расщеплению, распаду, но и, наоборот, воссоздают, синтезируют продукты распада в более сложные вещества.
Ферменты очень чувствительны к температуре. Все они - белки, а для белков характерны сильные изменения под действием высокой температуры. Это легко подтвердить примером из повседневной практики, нагревая куриное яйцо. Следует отметить, что нагревание до 40—50 градусов повышает способность ферментов ускорять химические реакции. Дальнейшее нагревание начинает снижать эту активность, а при температуре выше 90 градусов ферменты полностью утрачивают свои каталитические свойства, инактивируются.
Для каждого фермента существует оптимальная температура. В организме теплокровных животных и человека наиболее благоприятной для ферментов является температура тела.
Активность ферментов имеет огромное значение в жизнедеятельности живых организмов. Это легко иллюстрировать на примере растений. Зимой в них как бы замирает жизнь, а весной ферменты делаются все более активными. Ферменты очень тонко реагируют также на степень кислотности среды. Это важное свойство ферментов позволяет понять процесс пищеварения. Пища в полости рта смачивается слюной. Реакция ее почти нейтральная. Наибольшей активностью при такой реакции обладает содержащийся в слюне фермент амилаза. Он действует только на углеводы.
Ферменты называют «ключами» жизни за их чрезвычайно важное свойство: действовать избирательно, специфично, лишь на конкретное вещество. Можно повышать или, напротив, угнетать активность фермента некоторыми химическими, часто очень простыми по составу, веществами. Такие вещества действуют тоже очень специфично. Синильная кислота, например, резко повышает активность фермента папаина, расщепляющего белки, но совершенно парализует дыхательный фермент. Многие ферменты содержатся в тканях и клетках организма в совершенно неактивном состоянии. Это впервые показал И. П. Павлов на примере пищеварения. Пепсин делается активным только после того, как на его пассивную форму — пепсиноген — подействует соляная кислота.
Ферменты широко распространены в живой природе. Они содержатся во всех животных и растительных тканях, первоосновой которых являются белки. Это позволяет предположить, что все белки обладают в той или иной степени ферментативными свойствами.
Главный белок мышц — миозин обладает способностью сокращаться в объеме. Оказалось, что миозин — не только сократимый белок, но одновременно и фермент, который ускоряет химическую' реакцию, необходимую для этого сокращения.

Наши рекомендации