Общие принципы проектирования конструктивных элементов
ПРОМЫШЛЕННЫХ ЗДАНИЙ
На первом этапе проектированияопределяют функциональное назначение и место конструктивного элемента в здании.
На втором этаперешения поставленной задачи возникает необходимость всю совокупность воздействий, которым подвергается проектируемый элемент в процессе изготовления, доставки на постройку, монтажа и последующей эксплуатации, схематизировать и представить в виде системы простейших воздействий. Такая схематизация может быть справедливой в том случае, если последствия схематизированных воздействий будут аналогичны последствиям, возникающим в действительных условиях.
По природе возникновения могут быть выделены следующие внешние воздействия:
воздействия, определяемые местом рассматриваемого элемента в общей конструктивной схеме здания;
воздействия, вытекающие из природно-климатических условий и др. особенностей района строительства;
воздействия, вызываемые условиями эксплуатации помещений и работой расположенного в них технологического оборудования;
воздействия, возникающие в процессе производства строительных работ, изготовления и монтажа деталей.
Различные воздействия могут быть разовыми или повторяющимися в течение всего периода эксплуатации здания, могут накладываться одно на другое или действовать независимо, быть главными, определяющими и малозначительными. Выявление всех воздействий, играющих основную роль в решении рассматриваемого конструктивного элемента,— главная задача этого этапа.
Основная задача третьего этапаконструирования - выявить все последствия, обусловленные основными видами воздействий, с учетом вероятности их возникновения, повторяемости и совпадения. Все воздействия, как силовые, так и несиловые (температура, влажность, солнечная радиация и др.), способны вызвать в рассматриваемом элементе различные деформации, перемещения, изменения физико-механических свойств материалов, из которых состоит элемент. Последствия перечисленных воздействий могут носить обратимый характер, когда после прекращения их влияния на элемент или материалы последние восстанавливают свои первоначальные качества, и необратимые, навсегда видоизменяющие первоначальное положение элемента, его размеры, свойства, структуру.
На четвертом этапеустанавливают требования, которым должен удовлетворять конструируемый элемент. Эти требования вытекают из функционального его назначения и основываются на опыте строительства и эксплуатации подобных конструкций и рекомендаций, полученных по итогам научных исследований в этой области. Указанные требования устанавливают допустимые пределы возможных последствий, нормируют сроки службы и эксплуатационные качества элемента, его эстетические качества, степень индустриальности.
Требования, предъявляемые к элементу, предопределяют его прочность и устойчивость, изолирующую способность, долговечность, огнестойкость, гигиеничность, художественную выразительность, строительную технологичность, технико-экономическую целесообразность. Устанавливают их исходя из значимости и капитальности строящегося здания в соответствии с действующими нормами проектирования, указаниями, инструкциями и другой технической документацией. После того, как четко выявлены и схематизированы все воздействия, которым подвергается проектируемый элемент, определены последствия, ими вызываемые, а также уточнены предъявляемые к нему требования, предоставляется возможным подойти к основному, пятому, этапурешения задачи — выбору замысла конструкции на основе сопоставления различных вариантов ее решения и с использованием различных строительных материалов.
Принципиальное решение конструкций, включая выбор материалов, требующихся для ее осуществления, должно сопровождаться проведением необходимых расчетов для установления размеров как самой конструкции, так и составных ее частей. При этих расчетах используют все знания в области строительной физики, сопротивления материалов и др.
После определения всех размеров и графического отображения конструируемого элемента важно дать ему всестороннюю технико-экономическую оценку и сравнить с другими имеющимися решениями.
КАРКАСЫ ПРОМЫШЛЕННЫХ ЗДАНИЙ
Каркас одноэтажного промышленного здания обычно состоит из поперечных рам, образованных колоннами и несущими конструкциями покрытия (балки, фермы, арки и др.) и продольных элементов: фундаментных, подкрановых, обвязочных балок, подстропильных конструкций, плит покрытия и связей. Когда несущие конструкции покрытий выполняют в виде пространственных систем — сводов, куполов, оболочек, складок и др., они одновременно являются продольными и поперечными элементами каркаса.
Материалом для устройства каркаса служат преимущественно железобетон и реже сталь. При выборе материала каркаса руководствуются характером силовых и несиловых воздействий, воспринимаемых каркасом, а также учитывают размеры пролетов, шага колонн, высоту здания, место строительства, требования огнестойкости и технико-экономические соображения.
В одноэтажных производственных зданиях допускается применять стальные несущие конструкции:
а) для стропильных и подстропильных конструкций: в отапливаемых зданиях с пролетами 30 м. и более; в неотапливаемых зданиях и навесах различного назначения с асбестоцементной кровлей с пролетами до 12 м включительно при грузоподъемности подвесного подъемно-транспортного оборудования более 2 т, с пролетом 18 м; при грузоподъемности подвесного подъемно-транспортного оборудования более 3,2 т; в зданиях и навесах пролетом 24 м и более; в неотапливаемых однопролетных зданиях с рулонной кровлей с пролетами 30 м и более, а в многопролетных зданиях — с пролетами 18 м и более; в зданиях с подвесным подъемно-транспортным оборудованием грузоподъемностью более 5 т либо другими подвесными устройствами, создающими нагрузки, превышающие предусмотренные для типовых железобетонных конструкций; в зданиях на участках с развитой сетью подвесного конвейерного транспорта; в зданиях с расчетной сейсмичностью 8 баллов с пролетами 24 м и более; в зданиях с расчетной сейсмичностью 9 баллов с пролетами 18 м и более, а также в случаях возведения зданий в труднодоступных районах строительства; в зданиях с большими динамическими нагрузками (копровые цехи, взрывные отделения и др.); над горячими участками цехов с интенсивным теплоизлучением при температуре нагрева поверхности конструкций более 100° С (холодильники прокатных цехов, отделения нагревательных колодцев, печные и разливочные пролеты и т. п.) и др.;
б) колонны: в зданиях при высоте их от пола до низа стропильных конструкций более 18 м; при наличии мостовых кранов общего назначения
грузоподъемностью 50 т и более независимо от высоты колонн, а также при меньшей грузоподъемности кранов тяжелого режима работы; при шаге колонн более 12 м; при двухъярусном расположении мостовых кранов;
в) для подкрановых балок, светоаэрационных фонарей, ригелей и стоек фахверка;
г) для типовых легких несущихи ограждающих конструкций комплексной поставки (в этом случае могут применяться стальные и железобетонные колонны).