В чем сущность кислородной резки стали , какой инструмент при этом применяют?

Сущность процесса кислородной резки состоит в сгорании раз­резаемого металла в струе технически чистого кислорода и удале­нии образующихся при этом жидких шлаков из разреза. Применяет­ся разделительная кислородная резка и поверхностная. Углеро­дистые и низколегированные стали режутся с применением только чистого кислорода. Высоколегированные стали, чугун и медные сплавы режутся кислородом с применением специальных флюсов.

Процесс резки осуществляется или ручным способом, или меха­низированным с использованием специальных режущих перенос­ных приборов легкого типа, а также стационарных машин для авто­матизированной резки по шаблонам и разметке. Машинная резка широко применяется в машиностроении, особенно для предвари­тельной обрезки и скашивания кромок под сварку. Методы кисло­родной машинной резки продолжают широко развиваться и внед­ряться в промышленности путем создания новых конструкций спе­циализированных и универсальных машин.

Для осуществления процесса кислородной резки необходимо соблюдение следующих условий:

1. Температура плавления металла должна быть выше темпера­туры его воспламенения в кислороде. Не удовлетворяющий этому условию металл будет плавиться и переходить в жидкое состояние еще до начала его горения в струе кислорода. Малоуглеродистые и среднеуглеродистые стали полностью удовлетворяют этому ус­ловию, так как они плавятся при температуре примерно 1500°, а их горение в кислороде может начинаться уже при 1300—1350°.

Повышение содержания углерода в стали понижает ее темпе­ратуру плавления и поэтому ухудшает условия резки кислородом. Присутствие в стали трудноокисляемых легирующих элементов (хрома, никеля) в заметных количествах также ухудшает ее спо­собность разрезаться кислородом.

2. Температура плавления шлаков должна быть ниже температу­ры горения металла в кислороде, а образующиеся при резке шлаки должны быть жвдкотекучими и легко удаляться под действием дав­ления режущей струи.

3. При сгорании металла должно выделяться тепло, достаточ­ное для поддержания горения металла в кислороде.

4. Теплопроводность металла не должна быть слишком высокой и не препятствовать сохранению высокой температуры на поверх­ности кромки разреза.

Всем указанным выше условиям наиболее полно удовлетворяют стали с содержанием углерода до 0,5%, хрома до 5%, марганца до 4%. Остальное примеси в тех количествах, в которых они обычно содержатся в стали, не влияют заметно на процесс резки.

Перед началом резки сталь необходимо нагреть до температуры ее воспламенения в кислороде. Примерно 33% тепла от всего ко­личества, требующегося для этого, подводится за счет подогрева­ющего пламени, а 67% поступает от реакции сгорания стали в кис­лороде.* От общего количества тепла, расходуемого на резку, на нагрев стали до температуры воспламенения идет 54%; на нагрев шлаков — 22% и на покрытие потерь в окружающую среду—24%.

Для кислородной резки с применением ацетилена используют оборудование для ацетиленовой сварки, но вместо сварочной горелки применяют газовый резак, обычно инжекторного тапа.

Кислород и ацетилен по рукавам, надетым на ниппели, поступает в резак. Резак - это основной рабочий инструмент при газокислородной резке металла, предназначенный для смешивания горючего газа и кислорода, создания подогревающего пламени и подачи к разрезаемому металлу струи кислорода.

Резаки классифицируются по степени механизации - для ручной, машинной и специальной резки; по виду горючего - для ацетилена, газов-заменителей и жидких горючих; по назначению - универсальные и специальные; по способу смешивания газов - инжекторные и безинжекторные; по мощности пламени - малой, средней и большой мощности (толщина разрезаемой стали соответственно составляет 3…100 мм, 3.. .200 мм, 3... 300 мм).

Инжекторный резак для ручной резки состоит из рукоятки и корпуса, в который по рукаву (шлангу) через ниппель и штуцер с правой резьбой подается кислород, а по другому рукаву через ниппель и штуцер с левой резьбой подается ацетилен или его заменители. Часть кислорода через вентиль поступает в инжектор. Выходя из инжектора с большой скоростью, струя кислорода создает разрежение и подсасывает горючий газ. Сгорая на выходе из мундштука, струя создает подогревающее пламя. Другая часть кислорода через ниппель и головку поступает в сопло внутреннего мундштука, образуя при этом струю режущего кислорода. Мощность подогревающего пламени регулируется вентилями кислорода и горючего газа, а давление и расход режущего кислорода - самостоятельным вентилем.

Наши рекомендации