История и современное использование топливных элементов
Принцип действия топливных элементов был открыт в 1839 году. Английский ученый Уильям Гроув (William Robert Grove, 1811—1896) обнаружил, что процесс электролиза — разложения воды на водород и кислород посредством электрического тока — обратим, т. е. водород и кислород можно объединять в молекулы воды без горения, но с выделением тепла и электрического тока. Прибор, в котором удалось провести такую реакцию, Гроув назвал «газовой батареей» («gas battery»), которая представляла собой первый топливный элемент.
Активное развитие технологий использования топливных элементов началось после Второй мировой войны, и связано оно с аэрокосмической отраслью. В это время велись поиски эффективного и надежного, но при этом достаточно компактного источника энергии. В 1960-х годах специалисты НАСА (National Aeronautics and Space Administration, NASA) выбрали топливные элементы в качестве источника энергии для космических кораблей программ «Apollo» (пилотируемые полеты к Луне), «Apollo-Soyuz», «Gemini» и «Skylab». На корабле «Apollo» были использованы три установки мощностью 1,5 кВт (пиковая мощность 2,2 кВт), использующие криогенный водород и кислород для производства электроэнергии, тепла и воды. Масса каждой установки составляла 113 кг. Эти три ячейки работали параллельно, но энергии, вырабатываемой одной установкой, было достаточно для безопасного возвращения. В течение 18 полетов топливные элементы наработали в общей сложности 10 000 часов без каких-либо отказов. В настоящее время топливные элементы применяются в космических кораблях многоразового использования «Space Shuttle», где используются три установки мощностью 12 Вт, которые вырабатывают всю электрическую энергию на борту космического корабля (рис. 2). Вода, получаемая в результате электрохимической реакции, используется в качестве питьевой, а также для охлаждения оборудования.
Рис.1.Ноутбук с топливным элементом, работающем на метаноле, созданный компанией «NEC Corporation». Размеры ноутбука 270x270x40 мм, масса 2 кг.
Время работы на одной зарядке (0,3 л метанола) около 2 ч. Серийный выпуск намечен на конец 2004 года.
В нашей стране также велись работы по созданию топливных элементов для использования в космонавтике. Например, топливные элементы использовались для энергоснабжения советского корабля многоразового использования «Буран».
Разработки методов коммерческого использования топливных элементов начались в середине 1960-х годов. Эти разработки частично финансировались государственными организациями.
В настоящее время развитие технологий использования топливных элементов идет в нескольких направлениях. Это создание стационарных электростанций на топливных элементах (как для централизованного, так и для децентрализованного энергоснабжения), энергетических установок транспортных средств (созданы образцы автомобилей и автобусов на топливных элементах, в т. ч. и в нашей стране), а также источников питания различных мобильных устройств (портативных компьютеров, мобильных телефонов и т. д.) (рис. 1).
Примеры использования топливных элементов в различных областях приведены в табл. 1.
Одной из первых коммерческих моделей топливных элементов, предназначенных для автономного тепло- и электроснабжения зданий, стала модель «PC25 Model A» производства компании «ONSI Corporation» (сейчас «United Technologies, Inc.»). Этот топливный элемент номинальной мощностью 200 кВт относится к типу элементов с электролитом на основе ортофосфорной кислоты (Phosphoric Acid Fuel Cells, PAFC). Цифра «25» в названии модели означает порядковый номер конструкции. Большинство предыдущих моделей были экспериментальными или испытательными образцами, например, модель «PC11» мощностью 12,5 кВт, появившаяся в 1970-х годах. В новых моделях увеличивалась мощность, снимаемая с отдельной топливной ячейки, а также уменьшалась стоимость киловатта произведенной энергии. В настоящее время одной из самых эффективных коммерческих моделей является топливный элемент «PC25 Model C». Как и модель «A», это полностью автоматический топливный элемент типа PAFC мощностью 200 кВт, предназначенный для установки непосредственно на обслуживаемом объекте в качестве автономного источника тепло- и электроснабжения. Такой топливный элемент может устанавливаться снаружи здания. Внешне он представляет собой параллелепипед длиной 5,5 м, шириной и высотой 3 м, массой 18 140 кг. Отличие от предыдущих моделей — усовершенствованный реформер и более высокая плотность тока.
Таблица 1. Область применения топливных элементов
Область применения | Номинальная мощность | Примеры использования |
Стационарные установки | 5–250 кВт и выше | Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения |
Портативные установки | 1–50 кВт | Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники |
Мобильные установки | 25–150 кВт | Автомобили (опытные образцы создали, например, «DaimlerCrysler», «FIAT», «Ford», «General Motors», «Honda», «Hyundai», «Nissan», «Toyota», «Volkswagen», ВАЗ), автобусы (например, «MAN», «Neoplan», «Renault») и другие транспортные средства, военные корабли и субмарины |
Микроустройства | 1–500 Вт | Мобильные телефоны, ноутбуки, карманные компьютеры (PDA), различные бытовые электронные устройства, современные военные приборы |
В некоторых типах топливных элементов химический процесс может быть обращен: при подаче на электроды разности потенциалов воду можно разложить на водород и кислород, которые собираются на пористых электродах. При подключении нагрузки такой регенеративный топливный элемент начнет вырабатывать электрическую энергию.
Перспективное направление использования топливных элементов — использование их совместно с возобновляемыми источниками энергии, например, фотоэлектрическими панелями или ветроэнергетическими установками. Такая технология позволяет полностью избежать загрязнения атмосферы. Подобную систему планируется создать, например, в учебном центре Адама Джозефа Льюиса в Оберлине (см. «АВОК», 2002, № 5, с. 10). В настоящее время в качестве одного из источников энергии в этом здании используются солнечные батареи. Совместно со специалистами НАСА разработан проект использования фотоэлектрических панелей для получения водорода и кислорода из воды методом электролиза. Затем водород используется в топливных элементах для получения электрической энергии и горячей воды. Это позволит зданию поддерживать работоспособность всех систем при облачных днях и в ночное время.
Принцип действия ТЭ
Принцип действия ТЭ проще всего проиллюстрировать на примере ЩТЭ, который является первым типом ТЭ, примененным как источник электроэнергии для космических аппаратов.
Рис.5. Схема щелочного ТЭ.
На аноде ТЭ, к которому подводится молекулярный газообразный водород, происходят его диссоциация и ионизация:
H2 → 2H+ + 2e− .
В качестве электролита используется раствор щелочи КОН с концентрацией 30-50%. ЩТЭ работает при температуре 100-250 °С. Образовавшиеся ионы водорода за счет разности потенциалов анода и катода диффундируют через слой электролита к катоду. Электроны, образовавшиеся на аноде при замыкании внешней электрической цепи (нагрузка) протекают по ней к катоду, совершая полезную работу. При этом на катоде протекает реакция
2H+ + 2e− + О2 → H2O,
т.е. единственным продуктом при работе ЩТЭ является вода (водяной пар).
В ТЭ электроды и электролит в реакцию не вступают. Отличие ТЭ от гальванических заключается в том, что в них используются нерасходуемые электроды, работающие длительное время.
Эффективность реального топливного элемента во многом зависит от каталитических свойств электродов, обеспечивающих ионизацию реагентов. Для ЩТЭ в качестве катализаторов используется никель, серебро, металлы платиновой группы и др.
Для транспортной энергетики наибольший интерес представляют твердополимерные ТЭ (ТПТЭ), в которых проводником ионов водорода служит тонкая твердая полимерная мембрана. Рабочая температура ТПТЭ существенно ниже, чем для других ТЭ и составляет всего 60-80 °С. Единственной проблемой для ТПТЭ является организация отвода воды, образующейся при реакции водорода с кислородом.
Рис.6. Схема твердополимерного ТЭ.
Разработка ТПТЭ была начата компанией «General Electric» в конце 1950 гг. и одной из основных проблем стало создание химически стойкого электролита с низким удельным сопротивлением и высокой механической прочностью. Поэтому были созданы твердополимерные протонопроводящие мембраны – это полимеры с ионогенными (диссоциирующими на ионы) группами, образующие водонерастворимые ионообменные мембраны за счет пространственной сшивки полимерных цепей.
При контакте с водой мембрана набухает и происходит диссоциация ионогенных групп, в результате чего ионы водорода получают возможность перемещаться между фиксированными в полимере кислотными группами.
Хотя мембрана из твердополимерного электролита очень тонкая (около 120 мкм), она обладает низкой газопроницаемостью и снижает вероятность смешения взрывоопасных реагентов. В качестве электрокатализаторов в таких установках используются металлы платиновой группы.