Лекция 5. Мокрые методы пылеочистки с использованием

Явлений абсорбции и хемосорбции

Процессы очистки технологических и вентиляционных выбросов машиностроительных предприятий от газо- и парообразных примесей характеризуются рядом особенностей: во-первых, газы, выбрасываемые в атмосферу, имеют достаточно высокую температуру и содержат большое количество пыли, что существенно затрудняет процесс газоочистки и требует предварительной подготовки отходящих газов; во-вторых, концентрация газообразных и парообразных примесей (чаще в вентиляционных и реже в технологических выбросах) обычно переменна и очень низка.

Методы очистки промышленных выбросов от газообразных примесей по характеру протекания физико-химических процессов делятся на две группы:

− промывка выбросов растворителями примеси (метод абсорбции);

− промывка выбросов растворами реагентов, связывающих примеси химически (метод хемосорбции);

Метод абсорбции

Этот метод заключается в разделении газовоздушной смеси на составные части путем поглощения одного или нескольких газовых компонентов этой смеси поглотителем (называемым абсорбентом) с образованием раствора. Физическая сущность процесса абсорбции объясняется так называемой пленочной теорией, согласно которой при соприкосновении жидких и газообразных веществ на границе раздела фаз газ−жидкость образуется жидкостная и газовая пленки. Растворимый в жидкости компонент газовоздушной смеси проникает путем диффузии сначала через газовую пленку, а затем, сквозь жидкостную пленку, и поступает во внутренние слои абсорбента. Для осуществления диффузии необходимо, чтобы концентрация растворяемого компонента в газовоздушной смеси превосходила его равновесную концентрацию над жидкостью. Чем менее насыщен раствор, тем больше он поглощает газа.

Поглощающую жидкость (абсорбент) выбирают из условия растворимости в ней поглощаемого газа, температуры и парциального давления газа над жидкостью. Решающим условием при выборе абсорбента является растворимость в нем извлекаемого компонента и ее зависимость от температуры и давления. Если растворимость газов при 0 оС и парциальном давлении 101,3 кПа составляет сотни граммов на 1 кг растворителя, то такие газы хорошо растворимы.

Для удаления из технологических выбросов таких газов, как аммиак, хлористый или фтористый водород, целесообразно применять в качестве поглотительной жидкости воду, так как растворимость их в воде составляет сотни граммов на 1 кг Н2О. При поглощении же из газов сернистого ангидрида или хлора расход воды будет значительным, так как растворимость их составляет сотые доли грамма на 1 кг воды. В некоторых специальных случаях вместо воды применяют водные растворы таких химических веществ, как серная кислота (для улавливания водяных паров), вязкие масла (для улавливания ароматических углеводородов из коксового газа) и др.

Применение абсорбционных методов очистки, как правило, связано с использованием схем, включающих узлы абсорбции и десорбции. Десорбция растворенного газа (или регенерация растворителя) проводится либо снижением общего давления (или парциального давления) примеси, либо повышением температуры, либо использованием обоих приемов одновременно.

В зависимости от конкретных задач применяются абсорберы различных конструкций: пленочные, насадочные, трубчатые и др. Наибольшее распространение получили скрубберы, представляющие собой химически инертную насадку, размещенную в полости вертикальной колонны (рис. 34). В качестве насадки 1, обеспечивающей большую поверхность контакта газа с жидкостью, обычно используются кольца Рашига (рис. 35), кольца с перфорированными стенками и др. Материалы для изготовления насадки (керамика, фарфор, уголь, пластмассы, металлы) выбираются исходя из соображений антикоррозийной устойчивости. Орошение колонн абсорбентом осуществляется при помощи одного или нескольких разбрызгивателей.

Рис. 34. Орошаемая противопоточная Рис. 35. Формы стандартных элементов
насадочная башня: 1 − химически инертная насадка; 2 – разбрызгиватели насадки:1 − седло Берля; 2 − кольцо Рашига; 3 − кольцо Паля; 4 − розетка Теллера;5 − седло «Инталокс»  

Большое распространение получили башни с колпачковыми тарелками. На рис. 36 изображена схема устройства тарельчатого абсорбера, в котором вместо насадки установлено несколько тарелок 1. Каждая тарелка снабжена колпачками 2 с зубчатыми краями, патрубками 3 и переливными трубками 4. Абсорбент в этих аппаратах стекает от тарелки к тарелке по переливным трубкам. Очищаемый газ движется снизу вверх в направлении, указанном стрелками, барботируя через слой жидкости. При прохождении между зубцами колпачков газ разбивается на множество струек и пузырьков, в результате чего образуется большая поверхность соприкосновения взаимодействующих веществ.

Рис. 36. Схема колпачково-тарельчатого абсорбера:

1 − тарелки; 2 − колпачки с зубчатыми краями; 3 − патрубки; 4 − переливные трубки

В качестве абсорберов могут использоваться и такие устройства, как мокрые скрубберы Вентури и центробежные скрубберы (рис. 28 и 29) и др.

Метод хемосорбции

Этот метод основан на поглощении газов и паров твердыми или жидкими поглотителями с образованием малолетучих или малорастворимых химических соединений. Большинство реакций, протекающих в процессе хемосорбции, являются экзотермическими и обратимыми, поэтому при повышении температуры раствора образующееся химическое соединение разлагается с выделением исходных элементов.

Поглотительная способность хемосорбента почти не зависит от давления, поэтому хемосорбция более выгодна при небольшой концентрации вредных примесей в отходящих газах.

Примером хемосорбции может служить очистка газовоздушной смеси от сероводорода путем применения мышьяковощелочного, этаноламинового и других растворов. При мышьяковощелочном методе извлекаемый из отходящего газа сероводород связывается оксисульфомышьяковой солью, находящейся в водном растворе по реакции:

Na4As2S5O2 + H2S = Na4As2S6O+H2O . (29)

Регенерация раствора производится окислением образовавшегося продукта кислородом, содержащимся в очищаемом воздухе:

Na4As2S6O + 1/2О2 = Na4As2S5O2 + S↓ . (30)

В этом случае в качестве побочного продукта получается сера.

Основным видом аппаратуры для реализации процессов хемосорбции

служат насадочные башни, пенные и барботажные скрубберы, распылительные аппараты типа труб Вентури и аппараты с различными механическими распылителями. В промышленности распространены аппараты с подвижной насадкой, к достоинствам которых относятся высокая эффективность разделения при умеренном гидравлическом сопротивлении, а также большая пропускная способность по газу.

На рис. 37 показана принципиальная схема скруббера с подвижной насадкой. В верхней части аппарата установлен ороситель 1, а под ним размещены верхняя 2и нижняя опорная 5ограничительные решетки, между которыми находится подвижная насадка. К опорной решетке меньшим основанием прикреплен расширяющийся усеченный кольцевой элемент 4, делящий пространство опорной решетки на кольцевую 3и центральную 6зоны. В качестве насадочных тел используют полые, сплошные и перфорированные шары, а также кольца, полукольца, кубики, скрещенные сплошные и перфорированные диски.__

Рис. 37. Скруббер с подвижной насадкой

Обрабатываемый газ подается в аппарат под опорную решетку и делится на два потока: центральный и кольцевой. При прохождении кольцевой зоны поток газа сужается, увеличивает скорость движения, вступает в контакт с прижимаемыми к стенке элементами подвижной насадки и перемещает их от стенки в центральный поток. Насадка совершает пульсационное движение в центральном и прилегающем к стенке аппарата потоках, турбулизирует взаимодействующие фазы и обеспечивает высокую эффективность обработки газа жидкостью. В тех случаях, когда в результате процесса выпадает осадок, подвижная насадка удаляет его со стенок корпуса аппарата или опорной решетки.

Преимущество абсорбционных методов заключается в экономичности

очистки большого количества газов и осуществлении непрерывных технологических процессов. Эффективность мокрой очистки газов, отходящих, например,

от гальванических ванн с помощью скруббера при обезвреживании их 2−3 %-ным водным раствором едкой щелочи, составляет по хлороводороду 0,85−0,92 и по оксидам азота (NO2) − 0,65. При использовании в качестве поглотительной жидкости воды эффективность очистки по НСl снижается до 0,75.

Основной недостаток мокрых методов состоит в том, что перед очисткой и после ее осуществления сильно понижается температура газов, что приводит в конечном итоге к снижению эффективности рассеивания остаточных газов в атмосфере. Кроме того, оборудование мокрых методов очистки громоздко и требует создания системы жидкостного орошения. В процессе работы абсорбционных аппаратов образуется большое количество отходов, представляющих смесь пыли, растворителя и продуктов поглощения. В связи с этим возникают проблемы обезжиривания, транспортировки или утилизации шлама, что удорожает и осложняет эксплуатацию.

Наши рекомендации