Рассмотрим таблицу истинности
А | В | |
- Логическое произведение
Определение.Операция, выражаемая связкой “и”, называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой "•" (может также обозначаться знаками ^ или &). Высказывание А•В истинно тогда и только тогда, когда оба высказывания А и В истинны.
Например, высказывание
“10 делится на 2 и 5 больше 3”
истинно, а высказывания
“10 делится на 2 и 5 не больше 3”,
“10 не делится на 2 и 5 больше 3”,
“10 не делится на 2 и 5 не больше 3”
ложны.
Условное обозначение на структурных схемах схемы И с двумя входами представлено ниже..
Таблица истинности
А | В | |
- Импликация
Определение.Операция, выражаемая связками “если ..., то”, “из ... следует”, “... влечет ...”, называется импликацией (лат. implico — тесно связаны) и обозначается знаком ð. Высказывание А ð В ложно тогда и только тогда, когда А истинно, а В — ложно.
Каким же образом импликация связывает два элементарных высказывания? Покажем это на примере высказываний: “данный четырёхугольник — квадрат” (А) и “около данного четырёхугольника можно описать окружность” (В). Рассмотрим составное высказывание А ð В, понимаемое как “если данный четырёхугольник квадрат, то около него можно описать окружность”. Есть три варианта, когда высказывание А ðВ истинно:
- А истинно и В истинно, то есть данный четырёхугольник квадрат, и около него можно описать окружность;
- А ложно и В истинно, то есть данный четырёхугольник не является квадратом, но около него можно описать окружность (разумеется, это справедливо не для всякого четырёхугольника);
- A ложно и B ложно, то есть данный четырёхугольник не является квадратом, и около него нельзя описать окружность.
Ложен только один вариант: А истинно и В ложно, то есть данный четырёхугольник является квадратом, но около него нельзя описать окружность.
В обычной речи связка “если ..., то” описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться “бессмысленностью” импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими:
“если президент США — демократ, то в Африке водятся жирафы”,
“если арбуз — ягода, то в бензоколонке есть бензин”.
А | В | |
- Эквивалентность
Определение.Операция, выражаемая связками “тогда и только тогда”, "необходимо и достаточно”, “... равносильно ...”, называется эквиваленцией или двойной импликацией и обозначается знаком Û или ~ . Высказывание А В истинно тогда и только тогда, когда значения А и В совпадают.
Например, высказывания
“24 делится на 6 тогда и только тогда, когда 24 делится на 3”,
“23 делится на 6 тогда и только тогда, когда 23 делится на 3”
истинны, а высказывания
“24 делится на 6 тогда и только тогда, когда 24 делится на 5”,
“21 делится на 6 тогда и только тогда, когда 21 делится на 3”
ложны.
Данные таблицы можно рассматривать как определение вышеупомянутых операций
Высказывания А и В, образующие составное высказывание А ÛВ, могут быть совершенно не связаны по содержанию, например: “три больше двух” (А), “пингвины живут в Антарктиде” (В). Отрицаниями этих высказываний являются высказывания “три не больше двух” ( ), “пингвины не живут в Антарктиде” ( ). Образованные из высказываний А, В составные высказывания AÛB и Û истинны, а высказывания AÛ и ÛB — ложны.
Итак, нами рассмотрены пять логических операций: отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция.
Импликацию можно выразить через дизъюнкцию и отрицание:
А Û В = v В.
Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:
А Û В = ( v В) • ( v А).
Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.
Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (“не”), затем конъюнкция (“и”), после конъюнкции — дизъюнкция (“или”) и в последнюю очередь — импликация.
Контрольные вопросы
- Понятие алгебры логики
- Определение логического высказывания, примеры
- Таблица истинности
- Операция отрицания, примеры, логическая схема и таблица истинности для отрицания
- Логическое умножение, примеры, схема, таблица истинности
- Логическое сложение, примеры, схема, таблица истинности
- Логическое следствие, пример, схема, таблица истинности.
- Эквивалентность, пример, схема, таблица истинности.