О.в. фёдорова е.в.хамис е.в.мезина

О.В. ФЁДОРОВА Е.В.ХАМИС Е.В.МЕЗИНА

АНГЛИЙСКИЙ ЯЗЫК

В сфере компьютерных и телекоммуникационных технологий

УЧЕБНОЕ ПОСОБИЕ

Английский язык

«Информационные технологии и коммуникации»

Рекомендовано редакционно-издательским советом Астраханского государственного технического университета в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям 220700.62 «Автоматизация технологических процессов и производств», профиль подготовки «Автоматизация технологических процессов и производств (в нефтяной и газовой промышленности)»; 140100.62 «Теплоэнергетика и теплотехника», профиль подготовки «Автоматизация технологических процессов в теплоэнергетике и теплотехнике»; 210700.62 «Инфокоммуникационные технологии и системы связи», профиль подготовки «Сети связи и системы коммутации»; 210700.62 «Инфокоммуникационные технологии и системы связи», профиль подготовки «Системы мобильной связи»; 220400.68 «Управление в технических системах», магистерская программа «Роботы и робототехнические системы»; 220700.68 «Автоматизация технологических процессов и производств», профиль подготовки «Автоматизация технологических процессов и производств (в нефтяной и газовой промышленности)»

АСТРАХАНЬ 2014

ББК 81.43.21 – 923

УДК 811.111: 004 (075.8)

Ф 33

Составители:

кандидат педагогических наук, доцент кафедры «Иностранные языки в инженерно-техническом образовании» Фёдорова О.В.

старший преподаватель кафедры «Иностранные языки в инженерно-техническом образовании» Хамис Е. В.

старший преподаватель кафедры «Иностранные языки в инженерно-техническом образовании» Мезина Е.В.

Рецензенты:

Заведующий кафедрой «Иностранные языки в гуманитарном и естественно-научном образовании» Астраханского государственного технического университета, доктор филологических наук, профессор Т.В.Дроздова;

Заведующий кафедрой «Английский язык для экономических специальностей» Астраханского государственного университета, кандидат филологических наук, доцент М.В.Китик;

Директор Астраханского филиала НОУ ВПО РМАТ кандидат педагогических наук, доцент Е.Б.Володарская

Ф 33 Фёдорова О.В., Хамис Е.В., Мезина Е.В. Английский язык в сфере компьютерных технологий: учеб.пособие/ Астрахан.гос.техн.

ун-т. – Астрахань: Изд-во АГТУ, 2007. – 152с.

Содержит оригинальные тексты на английском языке с системой языковых и речевых упражнений, направленных на развитие навыков чтения, понимания, обсуждения, реферирования, перевода специализированных текстов и расширения словарного запаса по темам, связанным с различными аспектами сферы компьютерных технологий.

Для студентов высших учебных заведений и специалистов в сфере компьютерных технологий.

Учебное пособие утверждено на заседании кафедры «ИЯИТО»

« 24 » октября 2007 г., протокол № 2

© Астраханский государственный технический университет

Введение

Данное пособие рекомендуется использовать как для аудиторной, так и для внеаудиторной работы для студентов высших учебных заведений, обучающихся по направлениям 220700.62 «Автоматизация технологических процессов и производств», профиль подготовки «Автоматизация технологических процессов и производств (в нефтяной и газовой промышленности)»; 140100.62 «Теплоэнергетика и теплотехника», профиль подготовки «Автоматизация технологических процессов в теплоэнергетике и теплотехнике»; 210700.62 «Инфокоммуникационные технологии и системы связи», профиль подготовки «Сети связи и системы коммутации»; 210700.62 «Инфокоммуникационные технологии и системы связи», профиль подготовки «Системы мобильной связи»; 220400.68 «Управление в технических системах», магистерская программа «Роботы и робототехнические системы»; 220700.68 «Автоматизация технологических процессов и производств», профиль подготовки «Автоматизация технологических процессов и производств (в нефтяной и газовой промышленности)»; на занятиях научно-технического перевода, у студентов, получающих дополнительную квалификацию «Переводчик в сфере профессиональной коммуникации».

Учебное пособие состоит из четырёх частей: «Computer Technologies (Компьютерные технологии)», «Telecommunications (Телекоммуникации)», «Robotics (Роботизация)», «Processes in Automation Production (Процессы автоматизации производства)», а также раздел для дополнительного чтения«Supplementary Reading» и глоссарий «Glossary». Тексты содержат лексические и грамматические явления, вызывающие затруднения при чтении научно-технической литературы на английском языке. Для активизации лексики в каждом разделе (Unit) предусматривается поэтапное изучение вокабуляра, упражнения на закрепление лексического материала, дополнительные тексты для отработки навыков чтения и перевода, грамматические упражнения для снятия трудностей перевода, креативные и творческие упражнения.

Тексты адаптированы к целям профессионально-ориентированного преподавания английского языка в вузе и сопровождаются системой языковых и речевых упражнений, направленных на развитие навыков чтения, понимания, обсуждения, реферирования, перевода специализированных текстов, расширение словарного запаса по темам связанным с различными аспектами сферы информационных технологий и коммуникаций.

Содержание раздела для дополнительного чтения«Supplementary Reading» составляют тексты для дополнительного чтения и могут быть отведены на самостоятельное изучение студентами, извлечение информации и дальнейшее устное обсуждение. Тексты содержат общеупотребительную лексику - популярную отраслевую терминологию и слова общетехнического значения.

Кроме чтения и перевода текстовых материалов разной понятийной сложности, в число задач раздела для дополнительного чтения входит развитие и углубление навыков устной речи по темам, связанным с различными аспектами сферы информационных технологий и коммуникаций.

PART I

COMPUTER TECHNOLOGIES

UNIT I

PROGRAMMING LANGUAGES

Text I

EXERCISE 1

EXERCISE 2

EXERCISE3

EXERCISE4

EXERCISE5

EXERCISE 6

Here is a summary of the text ‘History of programming languages’. Put one word only into each gap.

Like many "firsts" in history, the first modern programming language is hard a)______. The first programming languages were b)______ on punch cards.

In the c)______ electrically powered computers were created.

The limited speed and memory capacity d)_____programmers to write hand tuned assembly language programs.

It was soon discovered that programming in assembly language required a great e)_____of intellectual effort and was error-prone.

In the 1950sFORTRAN, LISP, and Cobol whose f)_____are still in widespread use today were designed.

The period from the late 1960s to the late 1970s brought a g)_____flowering of programming languages.

Most of the major language h)______now in use were invented in this period.

The 1980s were years of i)_____consolidation.

The United States government standardized Ada, a systems programming language intended j)____use by defense contractors.

In Japan k)_____elsewhere, vast sums were spent investigating so-called "fifth generation" languages that incorporated logic programming constructs.

l)_____, one important new trend in language design was an increased focus on programming for large-scale systems through the use of modules, or large-scale organizational units of code.

The rapid growth m)_____the Internet in the mid-1990's was the next major historic event in programming languages.

By opening n)_____a radically new platform for computer systems, the Internet created an opportunity for new languages o)_____be adopted.

Programming p)_____evolution continues, in both industry and research.

Text II

Programming Languages

EXERCISE 1

EXERCISE 2

Words and word combinations to be learnt:

Trait – характерная черта, особенность

behaviour – поведение, режим

precisely – точно

construct - логическая структура, структурный компонент

template – образец, шаблон

ambiguous – неопределенный, неоднозначный

fromscratch – с нуля

toembed – вводить, внедрять

hostlanguage – базисный, базовый язык

EXERCISE 3

Read the text and discuss these questions:

1. How can we define programming languages?

2. Why do we need programming languages?

3. Is the function of the programming languages so important?

4. How can we explain the difference between the natural languages and programming languages?

5. What languages aren’t usually considered programming languages?

6. Why should programming languages possess a greater degree of preciseness and completeness than human languages?

7.What is the difference between high-level languages and machine-level languages?

EXERCISE 4

EXERCISE5

Language work. Try to guess the meaning of the following words from the text. The words in the text are given in italics.

Particularly

Host

Markup

Intended

Ambiguous

Precisely

EXERCISE 6

Find a word in the text that has the same or similar meaning to the italicized word:

§ Synthetic language,

§ To fulfill the same set of algorithms,

§ Conduct (n) of a machine,

§ Single out (v) the external behaviour,

§ Specifically (adv) a computer,

§ Assist (v) in communication,

§ demand (v) a greater degree of precision,

§ Exact (adj) and make small errors,

§ Characteristics (n) consider certain requirements,

§ To be performed (v ) (about the program),

§ Purpose (n) of the language.

EXERCISE 7

EXERCISE 8

EXERCISE9

EXERCISE 10

Learn the terms from the text below:

equation— уравнение, приравнивание

listofinstructions — переченькоманд

guard— защищать; предохранять; завершать; за­канчивать

appropriatesequence— необходимая (требуемая) последовательность

programlogic — логическая последовательность выпол­нения программы

flowchart— блок-схема; составлять блок-схе­му

flowcharting — построение блок-схемы

pictorialrepresentation — наглядное представление

predefinedsymbols— заранее заданные символы

specifics— специальные черты; характерные особенности

emplate [im'pleit] — шаблон; маска; образец; эталон

pseudocode— псевдокод; псевдопро­грамма

burden— издержки; затраты

programmingrules — правила программирования

consume — потреблять; расходовать

emphasize— выделять; подчеркивать

top-downapproach — принцип нисходящей разработки

loopinglogic — логическая схема выполнения (опера­ций) в цикле

Text III

Computer Programming

EXERCISE 1

EXERCISE 2

Learn the terms from text:

programminglanguage – язык программирования

codedform – кодированное представление; кодированный вид

toconvey — передавать; сообщать

toimprove — улучшать, совершенствовать

machine-orientedlanguage — машинно-ориентирован­ный язык

business-orientedlanguage — язык для (программирования) экономических задач

problem-orientedlanguage — проблемно-ориентированный язык

stringofbinary — строка двоичного представления

datahandling — обработка данных; работа с данными

field-namelength — длинаимениполя

incorporatefeatures — включать свойства, особенности

versatile — многофункциональный; разносторонний; универсальный

generous — большой, значительный (о количестве)

mathematicalrelationship — математическая связь (соотношение)

EXERCISE 3

EXERCISE 4

EXERCISE 5

EXERCISE 6

Text IV

EXERCISE 1

EXERCISE 2

EXERCISE 3

EXERCISE 4

Text A

Running the computer program

The operating system is a collection of program provided by the computer's manufacturer that allows us to schedule jobs for the computer, to translate source programs into object programs, to sort data stored on secondary storage devices, and to copy data from any input device to any output device. These programs are called control programs, language programs and utility programs.

The control program (often called the supervisor, monitor, or executive) is a main-storage-resident program. Its functions are to schedule jobs, schedule input and output for our programs, and to monitor the execution of our programs.

The language processors are programs that translate source programs into object programs. There are three types of language processors: assemblers, compilers, and interpreters. Each language has its own language processor.

The service programs are programs that are commonly used in all data processing centers. They have functions that are required by everyone using a computer. Examples of service programs include linkage editors to prepare object programs for execution, a librarian to catalog programs into a library area on magnetic disc, utility programs to transfer data from device to device, and sort-merge programs for sorting data on magnetic tape or disk.

Text B

The conversion of symbolic languages

As we see, most of the symbolic languages are oriented toward the particular application areas of business or science (math). The one problem with all symbolic languages is that none of them can be understood by a computer. The symbolic languages may say AP, ADD, or use a "plus" sign to indicate an addition step, but the only thing that means addition to a computer is its binary machine code. We have symbolic programs that are relatively easy for humans to understand, but they cannot be understood by computers. On the other hand, we have machine code that is understood by the computer, but it is difficult for humans to use. The solution is a translator that translates the symbolic program into machine code. The translator allows the human to work with relatively easy-to-understand symbolic languages and it allows the computer to follow instructions in machine code. The translation of symbolic instructions to machine code is accomplished through the use of a program called a language processor. There are three types of language processors. They are called assemblers, compilers, and interpreters. Each translates symbolic instructions to machine code, but each does it differently.

(The translator is a program itself. It is part of a group of programs, called the operating systems that help us to use the computer.)

Text C

Testing the computer program

There are two kinds of errors or bugs with which programmers must deal. The first type is the coding error. Such errors are syntax errors that prevent the language processor from successfully translating the source program to object program code. The language processor identifies the nature and the location of the error on the source program listing, so these errors are relatively easy to find and correct. The second type of bug is the logic error. The computer program can be successfully translated, but the program does not produce the desired results. These errors are generally much more difficult to find and to correct than are coding errors. Logic errors can be avoided through careful planning of the program logic, but it is the programmer's responsibility to test thoroughly all of the program's functions, in order to verify that the program performs according to specifications.

There are many tools provided to the programmer to help in debugging the program logic. These tools are called debug packages or tracing routines. They assist the programmer in following the logic by printing out calculation results and field values used in making logic decisions in the program. In a few cases it may be necessary to use a memory dump — a printout of the instructions and date held in the computer's memory — in order to find the cause of logic errors.

UNIT II

OPERATIONAL SYSTEMS

Text I

Operational systems

EXERCISE 1

EXERCISE 2

EXERCISE3

Translate words and choose the right meaning for the word:

1.Выполнять

a) activate, b)investigate, c)delete, d)perform

2.обеспечивать

a) instruct, b)promote, c)provide, d)deal

3.программа

a) command, b)control, c)programme, d)system

4.разрабатывать

a) discover, b) delete, c) edit, d) develop

5.загружать

a) insert, b) boot, c) process, d) realize

6.удалять

a) manage, b)install, c)run, d)delete

7.редактировать

a)switch, b) edit, c)store, d)fill

8.совместимый

a) interchangeable, b) dependable, c) compatible, d) portable

9.улучшенный

a) enhanced, b) enlarged, c) entered, d) enriched

EXERCISE 4

EXERCISE5

EXERCISE 6

EXERCISE7

EXERCISE8

EXERCISE 9

EXERCISE 10

UNIT III

COMPUTER VIRUSES

Text I

EXERCISE 1

EXERCISE 2

EXERCISE 3

EXERCISE 4

Text II

EXERCISE 4

Read and translate the following text with the dictionary. Look at each line and decide if it contains an extra and unnecessary word. These extra words can be from the following groups: articles, auxiliaries, comparatives, conjunctions, prepositions, personal pronouns, modifiers, relative pronouns.

Why we call it “Virus”

0 ٧ The word as virus is derived from and used in the same sense as the biological equivalent.
The term "virus" is often used in common parlance to describe all kinds of malware,
including those more that are more properly classified as worms or Trojans. Most popular
anti-virus software packages defend against all of these types of attack. In some technical
communities, the term "virus" is also extended so to include the authors of malware, in an
insulting sense. The English plural of "virus" is "viruses". Some people use "virii" or "viri"
as a plural, but this is rare. For a discussion about whether "viri" and "virii" are to correct
alternatives of "viruses", see plural of virus. The term "virus" was up first used in an
academic publication it by Fred Cohen in his 1984 paper “Experiments with Computer
Viruses”, where he credits Len Adleman with coining it. However, a 1972 science fiction
novel by David Gerrold, “When H.A.R.L.I.E. Was One”, includes a description of a too
fictional computer program called "VIRUS" that worked just like a virus (and was that
countered by a program called "VACCINE"). The term "computer virus" with current
usage also was appears in the comic book “Uncanny X-Men”, written by Chris Claremont
and published in 1982. Therefore, although Cohen's use of "virus" may, perhaps, have been
the first, it seems difficult to trace of the term “virus”.

EXERCISEEXERCISE 5

PART II

TELECOMMUNICATIONS

UNIT I

WHAT IS TELECOMMUNICATIONS

EXERCISE 1

Read and translate the text

Telecommunications, devices and systems, transmit electronic or optical signals across long distances. Telecommunications enables people around the world to contact one another, to access information instantly, and to communicate from remote areas. Telecommunications usually involves a sender of information and one or more recipients linked by a technology, such as a telephone system, that transmits information from one place to another. Telecommunications enables people to send and receive personal messages across town, between countries, and to and from outer space. It also provides the key medium for delivering news, data, information, and entertainment.

Telecommunications devices convert different types of information, such as sound and video, into electronic or optical signals. Electronic signals typically travel along a medium such as copper wire or are carried over the air as radio waves. Optical signals typically travel along a medium such as strands of glass fibers. When a signal reaches its destination, the device on the receiving end converts the signal back into an understandable message, such as sound over a telephone, moving images on a television, or words and pictures on a computer screen.

Telecommunications messages can be sent in a variety of ways and by a wide range of devices. The messages can be sent from one sender to a single receiver (point-to-point) or from one sender to many receivers (point-to-multipoint). Personal communications, such as a telephone conversation between two people or a facsimile (fax) message (see Facsimile Transmission), usually involve point-to-point transmission. Point-to-multipoint telecommunications, often called broadcasts, provide the basis for commercial radio and television programming.

EXERCISE 2

Words and expressions to be remembered:

Device – устройство

Transmit – передавать

Toaccessinformationinstantly - иметь своевременный доступ к информации

sender - отправитель

recipient - получатель, абонент

deliver - доставлять, распространять

broadcasts – радиопередачи, трансляция

message – сообщение

point-to-pointcommunication – прямая связь, связь через коммутатор

EXERCISE 3

EXERCISE 4

UNIT II

Text I

EXERCISE 1

Read and translate the text

Devices such as the telegraph and telephone relay messages by creating modulated electrical impulses, or impulses that change in a systematic way. These impulses are then sent along wires, through the air as radio waves, or via other media to a receiver that decodes the modulation. The telegraph, the earliest method of delivering telecommunications, works by converting the contacts (connections between two conductors that permit a flow of current) between a telegraph key and a metal conductor into electrical impulses. These impulses are sent along a wire to a receiver, which converts the impulses into short and long bursts of sound or into dots and dashes on a simple printing device. Specific sequences of dots and dashes represent letters of the alphabet. In the early days of the telegraph, these sequences were decoded by telegraph operators. In this way, telegraph operators could transmit and receive letters that spelled words. Later versions of the telegraph could decipher letters and numbers automatically. Telegraphs have been largely replaced by other forms of telecommunications, such as electronic mail (e-mail), but they are still used in some parts of the world to send messages.

The telephone uses a diaphragm (small membrane) connected to a magnet and a wire coil to convert sound into an analog or electrical waveform representation of the sound. When a person speaks into the telephone’s microphone, sound waves created by the voice vibrate the diaphragm, which in turn creates electrical impulses that are sent along a telephone wire. The receiver’s wire is connected to a speaker, which converts the modulated electrical impulses back into sound.

Broadcast radio and cellular radio telephones are examples of devices that create signals by modulating radio waves. A radio wave is one type of electromagnetic radiation, a form of energy that travels in waves. Microwaves are also electromagnetic waves, but with shorter wavelengths and higher frequencies. In telecommunications, a transmitter creates and emits radio waves. The transmitter electronically modulates or encodes sound or other information onto the radio waves by varying either the amplitude (height) of the radio waves, or by varying the frequency (number) of the waves within an established range (see Frequency Modulation). A receiver (tuner) tuned to a specific frequency or range of frequencies will pick up the modulation added to the radio waves. A speaker connected to the tuner converts the modulation back into sound.

Broadcast television works in a similar fashion. A television camera takes the light reflected from a scene and converts it into an electronic signal, which is transmitted over high-frequency radio waves. A television set contains a tuner that receives the signal and uses that signal to modulate the images seen on the picture tube. The picture tube contains an electron gun that shoots electrons onto a photo-sensitive display screen. The electrons illuminate the screen wherever they fall, thus creating moving pictures.

Telegraphs, telephones, radio, and television all work by modifying electronic signals, making the signals imitate, or reproduce, the original message. This form of transmission is known as analogtransmission. Computers and other types of electronic equipment, however, transmit digital information. Digital technologies convert a message into an electronic or optical form first by measuring different qualities of the message, such as the pitch and volume of a voice, many times. These measurements are then encoded into multiple series of binary numbers, or 1s and 0s. Finally, digital technologies create and send impulses that correspond to the series of 1s and 0s. Digital information can be transmitted faster and more clearly than analog signals, because the impulses only need to correspond to two digits and not to the full range of qualities that compose the original message, such as the pitch and volume of a human voice. While digital transmissions can be sent over wires, cables or radio waves, they must be decoded by a digital receiver. New digital telephones and televisions are being developed to make telecommunications more efficient.

Personal computers primarily communicate with each other and with larger networks, such as the Internet, by using the ordinary telephone network. Increasing numbers of computers rely on broadband networks provided by telephone and cable television companies to send text, music, and video over the Internet at high speeds. Since the telephone network functions by converting sound into electronic signals, the computer must first convert its digital data into sound. Computers do this with a device called a modem, which is short for modulator/demodulator. A modem converts the stream of 1s and 0s from a computer into an analog signal that can then be transmitted over the telephone network, as a speaker’s voice would. The modem of the receiving computer demodulates the analog sound signal back into a digital form that the computer can understand.

EXERCISE 2

Words and expressions to be remembered:

Signals - сигналы

be converted (into ) – бытьпреобразованным

bedecoded - быть расшифрованным

tocreate – создавать

receive -получить

transmit – передать

EXERCISE 3

EXERCISE 4

Text II

Transmitting the Signal

EXERCISE 1

EXERCISE 2

UNIT III

TRANSMISSION MEDIA

Text I

Wires and Cables

EXERCISE 1

Read and translate the text

Wires and cables were the original medium for telecommunications and are still the primary means for telephone connections. Wireline transmission evolved from telegraph to telephone service and continues to provide the majority of telecommunications services. Wires connect telephones together within a home or business and also connect these telephones to the nearest telephone switching facility.

Other wireline services employ coaxial cable, which is used by cable television to provide hundreds of video channels to subscribers. Much of the content transmitted by the coaxial cable of cable television systems is sent by satellite to a central location known as the headend. Coaxial cables flow from the headend throughout a community and onward to individual residences and, finally, to individual television sets. Because signals weaken as distance from the headend increases, the coaxial cable network includes amplifiers that process and retransmit the television signals.

EXERCISE 2

Words and expressions to be remembered:

Medium (pl. media) – способ, средство; среда.

switchingfacility – коммутационное оборудование

coaxialcable - коаксиальный кабель ( электрический провод, применяемый в сетях, имеющий соосное (коаксиальное) расположение центрального проводника, окруженного изолятором, и внешнего проводника, выполненного в виде проволочной оплетки; снаружи покрыт еще одним защитным слоем изолятора; менее подвержен помехам и ослаблению сигнала по сравнению с другими типами кабеля )

wires – провода

cable - кабель

headend – головной узел (в компьютерной сети)

amplifier – усилитель

Cordless telephones = wireless telephones

bentpipes - коленчатые трубы

relay – радиорелейная

EXERCISE 3

Match the following phrases with their Russian meanings:

fiber-optic hair-thin strands "backbone" link AM (amplitude modulation) FM (frequency modulation) high-capacity links Communications satellites orbit geostationary geosynchronous orbit scatter спутники связи; амплитудная модуляция; магистральная линия связи; магистральный канал связи; геосинхронная орбита; частотная модуляция; двигаться или вращаться по орбите распылять, рассеивать; жила (кабеля) толщиною с волос; высокоэффективные связи; геостационарный; волоконно-оптический, оптоволоконный;

EXERCISE 4

EXERCISE 5

Answer the questions

1. What was the original medium for telecommunications?

2. What is still the primary means for telephone connections?

3. What did the Wireline transmission start from?

4. What is the main purpose of coaxial cable?

Text II

Fiber-Optic Cables

EXERCISE 2

Text III

Radio waves

EXERCISEEXERCISE1

Read and translate the text

Radio waves are known to be general means of data transport in communication engineering. Radio waves were reported to be discovered by Henry Hertz in 1887. He was conducting experiments in his laboratory: two spheres were placed on the top of two rods and charged oppositely, the scientist observed a spark between them. Close to those spheres there was placed another piece of wire with neutrally charged spheres on its ends. Hertz could see a spark between them too. This strange phenomenon proved that radio waves really existed.

In Russia there were conducted experiments in order to discover radio waves. Alexander Popov succeeded in developing a device which proved the existence of radio waves. It was a lightning detector which determined the stroke of lightning. All these experiments justified ability of radio waves to be transmitted in the open field without special conducting means (wires).

When alternating current passes through a piece of wire, electromagnetic field is produced around it. This electromagnetic field fluctuates according to changes in electric current. The fluctuations can spread to great distance very quickly, their speed being close to light speed (about 300000 km/s). If there is a piece of wire or an aerial in the distance, it can receive these fluctuations. Data transportation takes place.Hence, radio waves are a form of electromagnetic radiation, created whenever a charged object (in normal radio transmission, an electron) accelerates with a frequency that lies in the radio frequency (RF) portion of the electromagnetic spectrum. In radio, this acceleration is caused by an alternating current in an antenna. Radio is the wireless transmission of signals, by modulation of electromagnetic waves with frequencies below those of visible light.

Radio waves have specific features: frequency and period. Fluctuation frequency of a radio wave f Hz is a number of fluctuations per a unit of time. Fluctuation period T sec is a time of one full fluctuation. Radio waves are divided according to the frequency range:

Low-frequency with fluctuation rate is about 30 kHz – 300 kHz;

Mid range – about 300 kHz – 3 MHz

High frequency – over 3 MHz

Radio frequencies occupy the range from a few tens of hertz to three hundred gigahertz, although commercially important uses of radio use only a small part of this spectrum.

To transmit data there are used special wave bands because wave transmission of certain frequency depends greatly from surrounding environment and noises. That is why radio waves are usually classified according to the following wave bands: long (kilometric) waves, medium (hectometric) waves, short waves, ultrashort waves (UHF), metric waves, microwaves, centimetric (infrared) waves, millimetric (visible light) waves, and submillimetric(X-rays and gamma rays) waves. Since the energy of an individual photon of radio frequency is too low to remove an electron from an atom, radio waves are classified as non-ionizing radiation.

One can often hear of radio waves in our everyday life. The most common example of receiving and transmitting radio waves is cellular phones. Radio waves help to transmit data from satellites to TV system and broadcast system. Even micro ovens (or SHF – Super High Frequency ovens) in our kitchens use radio waves to warm food.

EXERCISE 2

Words and expressions to be remembered:

Data transport – передачаданных

spark – вспышка, разряд

coherer – радио, когерер

contentious – спорный

hindsight – ретроспектива, взгляд в прошлое

bandwidth – полоса пропускания

topublicize – объявлять, предавать гласности

lightningdetector – обнаружитель молнии

amplitude-modulated - aмплитудно-модулированный

to fluctuate – колебаться

full fluctuation – полноеколебание

wire - провод

frequency-частота

time spread - период

non-ionizing radiation – неионизирующееизлучение

EXERCISE 3

EXERCISE 3

EXERCISE 4

EXERCISE 5

EXERCISE 6

Brief history of the radio

Early radios run the entire power of the transmitter through a carbon microphone. While some early radios ______ 1some type of amplification through electric current or battery, until the mid 1920s the most common type of receiver ______2 the crystal set. In the 1920s, amplifying vacuum tuberadio receivers and transmitters ______3 into use.

(use, be, ran, come)

One of the first developments in the early 20th century (1900-1959) ______4 that aircraft _______5 commercial AM radio stations for navigation. This ______6 until the early 1960s when VOR systems finally ______7 widespread (though AM stations are still marked on U.S. aviation charts).

(use, be, become, continue)

In 1960, Sony ______8 its first transistorized radio, small enough to fit in a vest pocket, and able to be powered by a small battery. It ______9 durable, because there ______ 10 no tubes to burn out. Over the next 20 years, transistors ________11 tubes almost completely except for very high-power uses.

(be, introduce, replace, be)

In 1963 color television commercially ______12, and the first (radio) communication satellite, TELSTAR,_______13. In the late 1960s, the U.S. long-distance telephone network _________14 to a digital network, employing digital radios for many of its links. In the 1970s, LORAN _______15 the premier radio navigation system. Soon, the U.S. Navy _______16.withsatellite navigation, culminating in the invention and launch of the GPS constellation in 1987. Digital transmissions ________17 to be applied to broadcasting in the late 1990s.

(Begin, be converted, become, be transmitted, experiment, be launched)

EXERCISE 7

T 7

Translate the following text into English.

Электромагнитное излучение распространяется благодаря колебаниям электромагнитного поля, которое образуется как в воздушном пространстве, так и в вакууме. Для этого излучению не нужна особая проводящая среда (как, например, эфир). Когда радио волны проходят через проводник, колебания электрического или магнитного поля индуцируют в нем переменный ток. Он преобразуется в аудио- или другие сигналы, несущие информацию. Слово «радио» поясняет этот процесс. Телевизионные и радиопередачи, передача информации с помощью сотовой связи являются радиочастотными излучениями.

EXERCISE8

Text IV

Uses of Radio

EXERCISEEXERCISE1

Read and translate the text

Today, radio takes many forms, including wireless networks, mobile communications of all types, as well as radio broadcasting.

Before the advent of television, commercial radio broadcasts included not only news and music, but dramas, comedies, variety shows, and many other forms of entertainment. Radio was unique among dramatic presentation that it used only sound.

Aviation voice radios use VHFAM. Aircraft fly high enough that their transmitters can be received hundreds of miles away, even though they are using VHF.

Marine voice radios can use AM in the shortwave High Frequency—3 MHz to 30 MHz. Government, police, fire and commercial voice services use narrowband FM on special frequencies. Civil and military HF (high frequency) voice services use shortwave radio to contact ships at sea, aircraft and isolated settlements.

Mobile phones transmit to a local cell site that ultimately connects to the public switched telephone network through an optic fiber or microwave radio and other network elements. When the mobile phone nears the edge of the cell site's radio coverage area, the central computer switches the phone to a new cell. Cell phones originally used FM, but now most use various digital modulation schemes. Satellite phones come in two types: INMARSAT and Iridium. Both types provide world-wide coverage. INMARSAT uses geosynchronous satellites, with aimed high-gain antennas on the vehicles. Iridium uses 66 Low Earth Orbit satellites as the cells.

Television sends the picture as AM and the sound as FM, with the sound carrier at fixed frequency (4.5 MHz in the NTSC system) away from the video carrier. Analog television also uses a vestigial sideband on the video carrier to reduce the bandwidth required.

Radio-frequency energy can be used for heating of objects. Microwave ovens use intense radio waves to heat food. Diathermy equipment is used in surgery for sealing of blood vessels. Induction furnaces are used for melting metal for casting.

Tractor beams can use radio waves which exert small electrostatic and magnetic forces. These are enough to perform station-keeping in microgravity environments.

Radiation pressure from intense radio waves has been proposed as a propulsion method for an interstellar probe called Starwisp. Since the waves are long, the probe could be a very light metal mesh, and thus achieve higher accelerations than if it were a solar sail.

Radio remote control use radio waves to transmit control data to a remote object as in some early forms of guided missile, some early TV remotes and a range of model boats, cars and airplanes. Large industrial remote-controlled equipment such as cranes and switching locomotives now usually use digital radio techniques to ensure safety and reliability.

Energy autarkic radio technology consists of a small radio transmitter powered by environmental energy (push of a button, temperature differences, light, vibrations, etc.). This technology includes, for example, solar powerstations in orbit beaming energy down to terrestrial users.

EXERCISE 2

EXERCISE3

EXERCISE 4

Make up word combinations which have the construction ‘noun + noun’. Find in the text another element to each noun below and translate the expression. There could be more then one noun added.

Radio broadcasting, …services, … network, … area, …sight, …carrier, …energy, …equipment, …vessels, … furnaces, …beams, …environment, …pressure, … method, …sail, …differences, …boat, …mesh, …station

EXERCISE 5

EXERCISE 6

EXERCISE 7

What significance do the following names have in relation to the text‘Uses of radio’? Look at the example:

Radio broadcast – Before the advent of television, commercial radio broadcasts included news and music, dramas, comedies, variety shows, and many other forms of entertainment.

1) VHF AM

2) 3 MHz to 30 MHz.

3) narrowband FM

4) INMARSAT and Iridium

5) geosynchronous satellites

6) 66 Low Earth Orbit satellites

7) 4.5 MHz in the NTSC system

8) a vestigial sideband

9) heating of objects

10) microgravity environments

11) radiation pressure

12) radio remote control

13) energy autarkic radio technology

14) Starwisp

Text V

Communications Satellites

EXERCISE 1

Read and translate the text. Insert necessary word combinations that are given into the gapped sentences of the text:

Communications satellites provide a means of ____ all over the globe, without the need for a network of wires and cables. They ___ Earth at a speed that enables them to stay above the same place on Earth at all times. This type of orbit is called geostationary or geosynchronous orbit because the satellite’s orbital speed operates in synchronicity with Earth’s ___. The satellites ___ transmissions from Earth and transmit them back to numerous Earth station receivers scattered within the receiving coverage area of the satellite. This relay function makes it ___ for satellites to operate as "bent pipes"—that is, wireless transfer stations for point-to-point and point-to-multipoint transmissions. Communications satellites are used by ___ to transmit signals across great distances. Ship, airplane, and land navigators also receive signals from ___ to determine geographic positions.

(Receive, satellites, orbit, transmitting telecommunications, rotation, telephone and television companies, possible)

EXERCISE 2

UNIT IV

TELECOMMUNICATIONS SYSTEMS

EXERCISE 1

EXERCISE 2

Text I

Telegraph

EXERCISE 1

EXERCISE 2

Text II

EXERCISE 1

EXERCISE 2

EXERCISE 3

Text III

Radio and Television

EXERCISE 1

EXERCISE 2

EXERCISE 3

EXERCISE 4

Match the following phrases with their meanings:

very high frequency (VHF) ultrahigh frequency (UHF) terrestrial link unscramble satellite dish high-resolution picture aspect ratio width форматное соотношение спутниковая антенна ширина изображение высокого разрешения наземная линия связи ультравысокая частота, УВЧ (300 - 3000 МГц) расшифровывать очень высокая частота, ОВЧ (30-300 МГц)

EXERCISE 5

EXERCISE 6

EXERCISE 3

UNIT V

FREQUENCY CONVERTERS

Text I

EXERCISE 2EXERCISE EXERCISE

Read and translate the international words:

Apparatus, system, channel, amplitude, modulation, unit, generators, electric filter, differential, limiter, compressors, correction, terminal, element, diode, transistor, transfer, spectrum, area, heterodyne, detector, receiver, conversion, process, principle of modulation, periodically, characteristics, radio, integrated, ordinary, balanced, crystal, professional, decameter, bipolar, unipolar, isolation, type.

EXERCISE 3

Find the Russian equivalents to the following words and word combinations in the box:

  Multichannel system, frequency division of channels, amplitude modulation, a number of various devices, frequency converter, amplifier, differential system, amplitude limiter, electric filter, correction circuit, frequency spectrum, super heterodyne detector, intermediate frequency, diode, super high frequency, low noises, bipolar transistor, unipolar transistor, non-balanced converter, double balanced converter.  

Амплитудная модуляция, многоканальная система, преобразователь частоты, ограничитель амплитуд, множество различных устройств, биполярный транзистор, полевой транзистор, частотное разделение каналов, усилитель, промежуточная частота, СВЧ, выравнивающий контур, спектр частот, супергетеродинный приемник, электрический фильтр, диод, дифференциальная система, малые шумы, двойной балансный преобразователь, небалансный преобразователь.

EXERCISE 4

EXERCISE 5

Words and word combinations to be remembered:

Thin-routesystems – малоканальная система

unit – узел аппаратуры

transceivingdevices – устройство приема и передачи сигналов

rangeextenders – сжиматель диапазона

rangecompressors –ограничитель диапазона

delineationcircuits – выравнивающий контур

terminalunits – оконечная аппаратура

nonlinearelements - нелинейные элементы

dead – пассивный

semiconductor –полупроводник

amplification – усиление

frequencyspectrumtransfer – перенос спектра частот

upwards / downwards – вверх/ вниз

fluctuation-carrier frequency – частотанесущегоколебания

at the output of the converter – навыходепреобразователя

line circuits with periodically changing characteristics – линейныецеписпериодическименяющимисяпараметрами

integrated – интегральный

ordinary – простой

balanced -балансный

ring – кольцевой

unipolar –полевой

circuit isolation – развязкамеждуцепями

EXERCISE 6

Scan the text again and count how many times the words ‘converter’ and ‘amplitude modulation’ are used in different combinations. Also give 5 verbs, 5 adverbs and 5 nouns concerning the subject of the text. What verb is met in the text most often? In what voice?

EXERCISE 7

Answer the questions about the text:

1. What units can be called the main units of a multichannel system?

2. Which elements are used in frequency converters?

3. Which other elements, beside non-linear are enabled in communication apparatuses? What is their advantage?

4. Why do radio engineers need frequency converters?

5. What is changed with the help of the frequency converters?

6. What elements does the circuit of a FC (frequency converter) consist of?

7. What types of FC can you name?

EXERCISE 8

EXERCISE 9

Text II

AM and FM broadcast radio

EXERCISE 1

EXERCISE 3

Work in pairs. Choose between the topics ‘AM broadcast radio’ and ‘FM broadcast radio’. Exchange information addressing to your partner, ask questions and get answers.

UNIT VI

AMPLIFIERS

Text I

What do we call Amplifiers

EXERCISE 1

EXERCISE2

EXERCISE 3

EXERCISE 4

EXERCISE 5

Answer the questions.

1. What did you learn about amplifiers?

2. What types of amplifiers can you name?

3. What are individual amplifiers designed for?

4. Where are batch amplifiers used?

5. What other types of amplifiers, besides individual and batch amplifiers, can you name? How can we obtain signal amplification?

6. What are main electric properties of amplifiers?

EXERCISE 6

EXERCISE 7

EXERCISE 8

Give definitions of the following terms:

A. amplifiers,

B. frequency converters,

C. transmitters,

D. receivers,

E. radio waves,

F. radar,

G. laser.

EXERCISE 9

EXERCISE 10

Text II

Navigation

EXERCISE 1

EXERCISE 2

Text III

EXERCISE 1

EXERCISE 2

Study the vocabulary.

Global Positioning System (GPS) - глобальная (спутниковая) системаме

Наши рекомендации