Ограниченияитранспортнаязадача
Здесь a и b — постоянные числа, заданные условиями задачи.[2] Если по условиям задачи вместо равенств предполагаются неравенства, то для неравенства вида «≤» для преобразования его в равенство надо добавить дополнительную переменную xn+1
xn+1
или несколько таких переменных (xn+2
xn+2
и т.д. по числу неравенств). Аналогично, для неравенств вида «≥» дополнительную неотрицательную переменную xn+i
xn+i
следует вычесть (или, что то же самое, прибавить с коэффициентом –1).
Транспортная задача (задача Монжа — Канторовича) — математическая задача линейного программирования специального вида. Её можно рассматривать как задачу об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки.
Транспортная задача по теории сложности вычислений входит в класс сложности P. Когда суммарный объём предложений (грузов, имеющихся в пунктах отправления) не равен общему объёму спроса на товары (грузы), запрашиваемые пунктами потребления, транспортная задача называется несбалансированной (открытой).
Транспортная задача (классическая) — задача об оптимальном плане перевозок однородного продукта из однородных пунктов наличия в однородные пункты потребления на однородных транспортных средствах (предопределённом количестве) со статичными данными и линеарном подходе (это основные условия задачи).
Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку). Под названием транспортная задача, определяется широкий круг задач с единой математической моделью, эти задачи относятся к задачам линейного программирования и могут быть решены оптимальным методом. Однако, спец.метод решения транспортной задачи позволяет существенно упростить её решение, поскольку транспортная задача разрабатывалась для минимизации стоимости перевозок.
Общая характеристика транспортной задачи
Условие:
Однородный груз сосредоточен у m поставщиков в объемах a1, a2, ... am.
Данный груз необходимо доставить n потребителям в объемах b1, b2 ... bn.
Известны Cij, i=1,2,...m; j=1,2,...n — стоимости перевозки единиц груза от каждого i-го поставщика каждому j-му потребителю.
Требуется составить такой план перевозок, при котором запасы всех поставщиков вывозятся полностью, запросы всех потребителей удовлетворяются полностью, и суммарные затраты на перевозку всех грузов являются минимальными.
Исходные данные транспортной задачи записываются в виде таблицы:
Исходные данные задачи могут быть представлены в виде:
§ вектора А=(a1,a2,...,am) запасов поставщиков
§ вектора B=(b1,b2,...,bn) запросов потребителей
§ матрицы стоимостей: