Применение статистических функций Excel для корреляционного анализа.

Функции КОРРЕЛ и ПИРСОН вычисляют коэффициент корреляции между двумя переменными измерений, когда для каждой переменной измерение наблюдается для каждого субъекта N (пропуск наблюдения для субъекта приводит к игнорированию субъекта в анализе). Корреляционный анализ иногда применяется, если имеется более двух переменных измерений для каждого субъекта N. В результате выдается таблица, корреляционная матрица, показывающая значение функции КОРРЕЛ (или ПИРСОН) для каждой возможной пары переменных измерений.

Коэффициент корреляции, как ковариационный анализ, характеризует область, в которой два измерения "изменяются вместе". В отличие от ковариационного анализа коэффициент масштабируется таким образом, что его значение не зависит от единиц, в которых выражены переменные двух измерений (например, если вес и высота являются двумя измерениями, значение коэффициента корреляции не изменится после перевода веса из фунтов в килограммы). Любое значение коэффициента корреляции должно находится в диапазоне от -1 до +1 включительно.

Корреляционный анализ дает возможность установить, ассоциированы ли наборы данных по величине, то есть, большие значения из одного набора данных связаны с большими значениями другого набора (положительная корреляция), или, наоборот, малые значения одного набора связаны с большими значениями другого (отрицательная корреляция), или данные двух диапазонов никак не связаны (нулевая корреляция).

Применение статистических функций Excel для дисперсионного анализа.

Существует несколько видов дисперсионного анализа. Требуемый вариант выбирается с учетом числа факторов и имеющихся выборок из генеральной совокупности.

Однофакторный дисперсионный анализ. Это средство служит для анализа дисперсии по данным двух или нескольких выборок. При анализе сравнивается гипотеза о том, что каждый пример извлечен из одного и того же базового распределения вероятности с альтернативной гипотезой, предполагающей, что базовые распределения вероятности во всех выборках разные. Если имеется всего две выборки, применяют функцию ТТЕСТ. Для более двух выборок не существует обобщения функции ТТЕСТ, и вместо этого можно воспользоваться моделью однофакторного дисперсионного анализа.

Двухфакторный дисперсионный анализ с повторениями. Этот вид анализа применяется, если данные можно систематизировать по двум параметрам. Например, в опыте по измерению роста растения обрабатывали удобрениями различных производителей (например, А, В, С) и содержали при различной температуре (например, низкой и высокой). Таким образом, для каждой из 6 возможных пар условий {удобрение, температура} имеется набор наблюдений за ростом растений. С помощью этого дисперсионного анализа можно проверить следующие гипотезы.



  1. Извлечены ли данные о росте растений для различных марок удобрений из одной генеральной совокупности независимо от температуры.
  2. Извлечены ли данные о росте растений для различных уровней температуры из одной генеральной совокупности независимо от марки удобрения.
  3. Извлечены ли 6 выборок, представляющих все пары значений {удобрение, температура}, используемые для оценки влияния различных марок удобрений (шаг 1) и уровней температуры (шаг 2), из одной генеральной совокупности. Альтернативная гипотеза предполагает, что влияние конкретных пар {удобрение, температура} превышает влияние отдельно удобрения и отдельно температуры.

Применение статистических функций Excel для корреляционного анализа. - student2.ru

Двухфакторный дисперсионный анализ без повторения. Этот вид анализа полезен при классификации данных по двум измерениям, как и двухфакторный дисперсионный анализ с повторением. Однако при этом анализе предполагается только одно наблюдение для каждой пары (например, для каждой пары {удобрение, температура}) в примере выше. При этом анализе можно добавлять проверки в шаги 1 и 2 двухфакторного дисперсионного анализа с повторениями, но недостаточно данных для добавления проверок в шаг 3.

Наши рекомендации