Алгоритмы получения симметричных составляющих
Из курса теоретических основ электротехники известно, что в электрических устройствах, выполненных симметрично, применение метода симметричных составляющих в значительной мере упрощает анализ несимметричных «процессов, так как при этом симметричные составляющие токов связаны законом Ома с симметричными составляющими напряжений только одноименной последовательности. Если какой-либо элемент цепи симметричен и обладает по отношению к симметричным составляющим токов прямой i1 , обратной i2 нулевой i0 последовательностей соответственно сопротивлениями Z1 Z2, Z0, то симметричные составляющие падения напряжения в этом элементе будут:
ΔŮ1 =Z1i1 (11-1)
ΔŮ2 =Z2i2 (11-2)
ΔŮ0 =Z0i0 (11-3)
Сопротивления Z1, Z2 и Z0 для сокращения обычно называют сопротивлениями соответственно прямой, обратной и нулевой последовательностей. Их величины для одного и того же элемента в общем случае различны.
Дальнейшее развитие представлений метода симметричных составляющих -применительно к синхронным машинам с несимметричным ротором в условиях установившихся режимов и переходных процессов при нарушении симметрии впервые дано Н. Н. Щедриным. Помимо математического обоснования такого развития, им предложены для учета высших гармоник специальные цепные схемы, применение которых особенно эффективно при выполнении расчетов с помощью моделей или иных расчетных установок.
Метод широко применяется для расчета несимметричных режимов работы электроэнергетических систем.
Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.
Для трехфазных транспонированых ЛЭП результат этого преобразования - точная матрица собственных векторов (матрица модального преобразования).
Помехозащищенность цифровых реле.
Методы борьбы с помехами разнообразны. Наиболее эффективный путь – многократное превышение мощности полезного сигнала над мощностью помехи. Наиболее распространенные методы борьбы с помехами сводятся к ослаблению гальванических, емкостных и электромагнитных связей.
Предусматривают следующие мероприятия для снижения помех:
1.Предусматривать раздельную прокладку цепей разного назначения.
2. Увеличивать расстояния между отдельными цепями и уменьшать протяженность совместного пролегания цепей.
3. Для соединения отдельных узлов микропроцессорных систем использовать экранированные провода и кабели.
4. Применять витые пары проводов.
5. Применять разделительные трансформаторы с экранной обмоткой, сетевые фильтры, оптроные развязки и т.д.
.Экранирование электрических линий связи применяется для снижения влияния на кабель внешних электромагнитных полей. Экран представляет собой медную или алюминиевую оболочку (плетеную или из фольги), в которую заключаются провода кабеля. Экранирование будет работать, если экран заземлен, поскольку необходимо, чтобы наведенные на него токи стекали на землю. Кроме того, экранирование заметно уменьшает и внешние излучения кабеля, что важно для обеспечения секретности передаваемой информации. Побочными полезными эффектами экранирования являются увеличение прочности кабеля и трудности с механическим подключением к кабелю для подслушивания. Экран заметно повышает не только стоимость кабеля, но также и его механическую прочность.
Методы борьбы с помехами.
Помеха - внешнее или внутреннее воздействие, приводящее к искажению аналоговой или дискретной информации во время ее хранения, преобразования, обработки или передачи.
Различают помехи общего и нормального вида.
Помехи нормального вида - такие помехи, источник которых находится в цепях данного канала связи. Источниками помех нормального вида могут быть элементы цепи, генерирующие сигналы, точки соединения разнородных проводников.
Помехи общего вида - такие помехи, источник которых находится в сигнальных или силовых цепях, не относящихся к данному каналу связи. Источниками помех общего вида могут быть электрические цепи, электротехническое оборудование, системы заземления, токопроводящие элементы строительных конструкций.
Методы борьбы с помехами:
1) Воздействие на источники помех - предотвращение появления или уменьшение числа источников помех и уровня создаваемых ими помех.
2) Уменьшение или исключение паразитных связей источников помех с каналами передачи данных и увеличение затухания помех на пути их проникновения в канал передачи данных.
3) Выделение и фильтрация помех в приемнике.
Для исключения и ослабления паразитных связей используют:
1)Пространственное разделение цепей
- существует минимально допустимое расстояние между силовыми и сигнальными цепями, которое зависит от тока и напряжения в силовых цепях. Например для тока 10А и напряжения 220В - не менее 30 см.
- не следует располагать силовые и сигнальные линии параллельно, если пересекать, то под углом 90о.
- расстояние от сигнальных линий до металлических конструкций должно быть не менее 30 см.
- сигнальные линии следует прокладывать не ближе 10-15 см от помещений с интенсивным источником помех (машинные залы и т.д.)
2)Экранирование сигнальных цепей. Использование экранированных кабелей, а также прокладка кабелей в металлических трубах и желобах ослабляет влияние паразитных электромагнитных и электростатических полей.
3)Симметрирование. Например использование витой пары - это эффективное средство борьбы с помехами от внешних НЧ электромагнитных полей. ЭДС наводимое в составляющих пару проводах полностью компенсируется по знаку и модулю.
4)Гальваническое разделение канала связи на несколько контуров (трансформаторная или оптическая развязка). Обычно такое разделение используют в том случае, когда канал связи имеет несколько заземляющих устройств.