Истинность и ложность высказываний.
Логическое высказывание — это любoе повествовательное пpедлoжение, в oтнoшении кoтopoгo мoжно oднoзначнo сказать, истиннo oнo или лoжнo.
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:
НЕ Операция, выражаемая словом "не", называется отрицанием и обозначается чертой над высказыванием (или знаком ). Высказывание истинно, когда A ложно, и ложно, когда A истинно. Пример. "Луна — спутник Земли" (А); "Луна — не спутник Земли" ( ).
И Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой " . " (может также обозначаться знаками или &). Высказывание А . В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание "10 делится на 2 и 5 больше 3" истинно, а высказывания "10 делится на 2 и 5 не больше 3", "10 не делится на 2 и 5 больше 3", "10 не делится на 2 и 5 не больше 3" — ложны.
ИЛИ Операция, выражаемая связкой "или" (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом). Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны. Например, высказывание "10 не делится на 2 или 5 не больше 3" ложно, а высказывания "10 делится на 2 или 5 больше 3", "10 делится на 2 или 5 не больше 3", "10 не делится на 2 или 5 больше 3" — истинны.
ЕСЛИ-ТО Операция, выражаемая связками "если ..., то", "из ... следует", "... влечет ...", называется импликацией (лат. implico — тесно связаны) и обозначается знаком . Высказывание ложно тогда и только тогда, когда А истинно, а В ложно.
РАВНОСИЛЬНО Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно ...", называется эквиваленцией или двойной импликацией и обозначается знаком или ~. Высказывание истинно тогда и только тогда, когда значения А и В совпадают. Например, высказывания "24 делится на 6 тогда и только тогда, когда 24 делится на 3", "23 делится на 6 тогда и только тогда, когда 23 делится на 3" истинны, а высказывания "24 делится на 6 тогда и только тогда, когда 24 делится на 5", "21 делится на 6 тогда и только тогда, когда 21 делится на 3" ложны.
Высказывания А и В, образующие составное высказывание , могут быть совершенно не связаны по содержанию, например: "три больше двух" (А), "пингвины живут в Антарктиде" (В). Отрицаниями этих высказываний являются высказывания "три не больше двух" ( ), "пингвины не живут в Антарктиде" ( ). Образованные из высказываний А и В составные высказывания A B и истинны, а высказывания A и B — ложны.
Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.
Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания ("не"), затем конъюнкция ("и"), после конъюнкции — дизъюнкция ("или") и в последнюю очередь — импликация.
6.5.умозаключение как форма мышления.
Умозаключение - это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение). Посылками умозаключения по правилам формальной логики могут быть только истинные суждения. В противном случае можно прийти к ложному умозаключению.
Логическое умножение (конъюнкция) – объединение двух (или нескольких) высказываний в одно с помощью союза “и”. Истинно тогда и только тогда, когда истинны все входящие в него простые высказывания.
Логическое сложение (дизъюнкция) -Объединение высказываний с помощью союза “или”. Истинно тогда, когда истинно хотя бы одно из входящих в него простых высказываний.
Логическое отрицание (инверсия) -присоединение частицы “не”. Делает истинное высказывание ложным и, наоборот, ложное — истинным.
Логическая ИМПЛИКАЦИЯ (следование).Высказываниеявляется ложным тогда и только тогда, когда условие (первое высказывание) истинно, а следствие (второе высказывание) ложно.
Логическая ЭКВИВАЛЕНЦИЯ(равнозначность) Высказывание является истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.
Логические операции имеют приоритет: действия в скобках, инверсия, конъюнкция, дизъюнкция, импликация, эквиваленция.
Алгебра высказываний.
Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их содержание. В алгебре высказываний суждениям (простым высказываниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. (А = “Два умножить на два равно четырем”. В — “Два умножить на два равно пяти”). Над высказываниями можно производить определенные логические операции, в результате которых получаются новые, составные высказывания. Для образования новых высказываний наиболее часто используются базовые логические операции, выражаемые с помощью логических связок “и”, “или”, “не”.