Вопрос. Двоичная форма представления символов
ДВОИЧНАЯ ФОРМА ЦЕЛЫХ ЧИСЕЛ. КОЛИЧЕСТВО ИНФОРМАЦИИ
ЭВМ является электрическим прибором. Она управляется с помощью электрических сигналов. Поэтому любые данные должны быть некоторым универсальным образом представлены в таком виде, чтобы их можно было легко перевести на «электрический» язык. Таким свойством обладают двоичная форма целых чисел. Для записи числа в двоичной форме используются только два символа 0 и 1. Эти символы легко поставить в соответствие некоторому фиксированному значению напряжения в электрических схемах ЭВМ (см. рис. 1.3).
Рис. 1 3 Поток данных в двоичной форме
Чтобы обрабатывать данные, необходимо иметь некоторый универсальный способ представления операций с целыми числами, чтобы эти операции были легко представимы на «электрическом» языке. Оказывается, что этому условию удовлетворяют три операции с двоичными числами. Это операции логического сложения «ИЛИ», логического умножения «И» и отрицания «НЕ».
Таблица STYLEREF 1 \s 1. SEQ Таблица \* ARABIC \s 1 1 Операции с двоичными числами
x | y | ИЛИ | И | НЕ х |
Таким образом, все данные, с которыми работают ЭВМ, представлены в виде двоичных чисел, а все действия с данными сводятся к комбинации трёх логических операций.
Пример
Рассмотрим сложение чисел 4+3. В двоичной форме эти числа будут иметь вид соответственно 0100 и 0011. Выполняя операцию логического сложения с каждым разрядом обоих чисел, получим число 0111, что является двоичным представлением числа 7.
Количество информации, соответствующее двоичному числу, называют битом [bit]. Число, которое представлено N битами называется N-битным или N-разрядным.
В дальнейшем оказалось удобным оперировать последовательностями нулей и единиц, объединённых в группы фиксированного размера.
Наибольшее значение имеет последовательность из восьми двоичных чисел - 8-разрядное число. Количество информации, соответствующее такому числу, называетсябайтом [byte]. Кроме того, используются группы, называемые словом [word]. Размер слова зависит от характеристик конкретной ЭВМ, но, как правило, в большинстве современных ЭВМ размер слова равен 2 байтам.
Имеются разные стандарты для представления символов, которые отличаются лишь порядком нумерации символов. Наиболее распространён американский стандартный код для информационного обмена - ASCII [American Standard Code for Information Interchange] введён в США в 1963г.
Недостатки способа кодировки национального алфавита очевидны. Во-первых, невозможно одновременное представление русских и, например, французских букв. Во-вторых, такая кодировка совершенно непригодна для представления китайских или японских иероглифов. В 1991 году была создана некоммерческая организация Unicode, в которую входят представители ряда фирм (Borland, IBM, Lotus, Microsoft, Novell, Sun,WordPerfect и др.), и которая занимается развитием и внедрением нового стандарта. Кодировка Unicode использует 16 разрядов и может содержать 65536 символов. Это символы большинства народов мира, элементы иероглифов, спецсимволы, 5000 мест для частного использования, резерв из 30000 мест.
7 вопрос. Способы цифрового кодирования изображений
В видеопамяти находится двоичная информация об изображении, выводимом на экран. Эта информация состоит из двоичных кодов каждого видеопикселя. Код пикселя — это информация о цвете пикселя.Для получения черно-белого изображения (без полутонов) пиксель может принимать только два состояния: светится — не светится (белый — черный). Тогда для его кодирования достаточно одного бита памяти: 1 — белый, О — черный. Пиксель на цветном дисплее может иметь различную окраску. Поэтому одного бита на пиксель недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксель, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 — черный, 10 — зеленый, 01 — красный, 11 — коричневый. На RGB-мониторах все разнообразие цветов получается из сочетаний трех базовых цветов — красного, зеленого, синего. Из трех цветов можно получить восемь комбинаций:Таблица 1 Двоичный код восьмицветной палитры 000Черный 001Синий 010Зеленый 011Голубой 100Красный 101Розовый1 10Коричневый1 11БелыйО казывается, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, дающих разные краски и оттенки, увеличивается. Шестнадцатицветная палитра получается при использовании 4-разрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно (интенсивностью трех электронных пучков). Большее количество цветов получается при раздельном управлении интенсивностью базовых цветов. Причем интенсивность может иметь более двух уровней, если для кодирования каждого из базовых цветов выделять больше одного бита. Из сказанного можно вывести правило: Количество различных цветов — К и количество битов для их кодировки — b связаны между собой формулой: 2b= К. Все создаваемые с помощью компьютера изображения можно разделить на две большие части – растровую и векторную графику. Растровые изображения представляют собой однослойную сетку точек, называемых пикселями, каждая из которых может иметь определенный цвет. В противоположность этому векторное изображение многослойно. Каждый элемент этого изображения - линия, прямоугольник, окружность или фрагмент текста - располагается в своем собственном слое, пиксели которого устанавливаются совершенно независимо от других слоёв. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (мат. уравнения линий, дуг, окружности и т.д.). Кроме того, сложные объекты (ломаные линии, различные геометрические фигуры) описываются как совокупность элементарных графических объектов (линий, дуг и т.д.). Такое векторное изображение представляет собой совокупность слоев содержащих различные графические объекты. Слои накладываясь друг на друга формируют цельное изображение. Объекты векторного изображения, могут произвольно без потери качества изменять свои размеры. При изменении размеров объектов растрового изображения происходит потеря качества. Например, при увеличении растрового изображения увеличивается зернистость. |
8 вопрос. Понятие и история развития вычислительной техники. Архитектура фон Неймана
Архитектура фон Неймана— широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.
Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.
Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.
Принципы фон Неймана
В 1946 году трое учёных[1] — Артур Бёркс (англ. Arthur Burks), Герман Голдстайн (англ. Herman Goldstein) и Джон фон Нейман — опубликовали статью «Предварительное рассмотрение логического конструирования электронного вычислительного устройства»[2]. В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций — до этого машины хранили данные в десятичном виде[3]), выдвигалась идея использования общей памяти для программы и данных. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «принципы фон Неймана».
1. Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов (двоичных цифр, битов) и разделяется на единицы, называемые словами.
2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.
3. Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.
4. Принцип последовательного программного управления. предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
5 Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.
Компьютеры, построенные на этих принципах, относят к типу фоннеймановских.