Биологический подход к решению задач искусственного интеллекта. Генетические алгоритмы и их использование. Нейронные сети и их использование.
Понятие о биологическом подходе к решению задач искусственного интеллекта. Генетические алгоритмы и их использование для задач поиска оптимального решения. Структура генетического алгоритма. Отбор, мутация и скрещивание (кроссовер) в генетическом алгоритме. Моделирование нейронов (модели персептрона, адалайна, Хебба, инстар-оутстар и т.д.). Основные виды нейронных сетей и их использование.
Экспертные системы: структура, назначение, классификация. Методы построения экспертных систем. Понятие о инженерии знаний.
Понятие экспертной системы. Структура экспертной системы (основные блоки). Пояснить назначение блоков интеллектуального интерфейса, механизма логического вывода, базы знаний, системы обучения. Классификация экспертных систем по назначению и методам построения. Методы построения экспертных систем (нечеткая логика, семантические сети, продукционно-фреймовая система, нейронные сети и т.д.). Понятие машинного обучения, роль эксперта и инженера знаний в процессах пополнения знаний.
Математические модели в физике, химии, биологии и экономике.
Перечисляются известные модели физики (модели теплопроводности, колебательной системы), химии (кинетические модели химических реакций, структурные модели) и связанные с ними задачи моделирования, биологии (модель внутри и межвидовой борьбы, логистическая модель), экономики (транспортная задача, распределение ресурсов, распределение потоков в сети, определение кратчайших путей).
Стохастическое моделирование. Метод Монте-Карло в моделировании. Генерирование случайных и псевдослучайных чисел. Методы и алгоритмы генерации. Генерирование случайных чисел распределенных по экспоненциальному, нормальному и произвольно заданному закону распределения.
Понятие стохастического моделирования. Понятие детерминированного процесса, случайного процесса, шума. Сущность метода Монте-Карло. Применение данного метода для вычисления интегралов, поиска экстремума, проверки равномерности распределения. Построение генераторов случайных чисел. Понятие псевдослучайных чисел. Различные виды генераторов: табличный, аппаратный и алгоритмический способ. Примеры алгоритмических генераторов (генератор Фон-Неймана, линейный генератор, генератор Таусворта). Закон распределения случайных величин. Генерация случайных величин распределенных по экспоненциальному, нормальному и произвольному закону распределения.
Моделирование потоков случайных событий. Системы массового обслуживания. Основные понятия и характеристики потоков. Классификация систем массового обслуживания. Оценка основных параметров систем массового обcлуживания (очередь, время ожидания и т.д.).
Потоки событий их параметры и классификация. Характеристика потоков - плотность, распределение, последействие, однородность, стационарность. Системы массового обслуживания - понятие, классификация, примеры. Графовая модель СМО. Вероятность перехода. Уравнения Колмогорова. Финальные вероятности. Основные характеристики СМО - длина очереди, время ожидания, число отказов, время обслуживания. Схема гибели и размножения.
Основы теории погрешности. Прямая и обратная задачи теории погрешностей. Оценка погрешности.
Понятие погрешности и ее виды. Абсолютная и относительная погрешность, оценка погрешности. Прямая и обратная задачи теории погрешности. Пример вычисления погрешностей суммы, разности, произведения, частного.
Численные методы решения нелинейных уравнений с одним неизвестным.
Методы решения нелинейных уравнений. Отделение корней нелинейного уравнения. Уточнение корней. Метод дихотомии (деления отрезка пополам). Конечные и итерационные методы. Метод простой итерации. Сходимость метода. Метод Ньютона. Сравнение методов.
Решение систем линейных уравнений: конечные и итерационные методы.
Численные методы решения СЛАУ. Метод Гаусса. Приведение матрицы системы к треугольному виду с помощью исключений. Прямой и обратный ход метода. Выбор главного элемента. Метод полного исключения Жордана. Сравнение методов. Итерационные методы решения СЛАУ. Метод простой итерации. Норма матрицы. Метод Зейделя. Невязка.