Телекоммуникационные сигналы и сообщения

Телефонные (речевые) сигналы

Рассмотрим принцип получения телефонного электрического сигнала на примере угольного микрофона (рис. 2.1). В нем мембрана соприкасается с угольным порошком. Пока в микрофон не говорят, сопротивление порошка остается неизменным и через него от батареи в линию протекает постоянный ток. Стоит произнести в микрофон какое-нибудь слово, порошок под действием колеблющейся мембраны будет то спрессовываться, то разрыхляться. Изменение плотности порошка приводит к изменению его электрического сопротивления, а значит, и к изменению тока, текущего через порошок. В проводах, идущих от микрофона, рождается электрический ток, повторяющий форму звукового давления.

Изучение речи показывает, что речь - это процесс, частотный спектр которого находится в пределах от 50...100 до 8000...10000 Гц. Установлено, однако, что качество речи остается вполне удовлетво­рительным, если ограничить спектр снизу и сверху частотами 300 и 3400 Гц. Эти частоты приняты Международным союзом электросвязи (МСЭ) в качестве границ эффективного спектра речи. При указанной полосе частот сохраняется хорошая разборчивость речи и удовлетворительная натуральность ее звучания.

 
  Телекоммуникационные сигналы и сообщения - student2.ru

Рисунок 2.1 – Превращение звука в электрический сигнал с помощью микрофона

Сигналы звукового вещания. Источниками звука при передаче программ вещания обычно являются музыкальные инструменты или голос человека. Формирование сигналов звукового вещания и их прием осуществляется так же, как и телефонных сигналов. Используются лишь другие типы микрофонов.

Спектр звукового сигнала занимает полосу частот 20...20 000 Гц. Однако в зависимости от требований к качеству воспроизведения ширина спектра сигнала вещания может быть ограничена. Для достаточно высокого качества (каналы вещания первого класса) полоса частот должна составлять 50...10 000 Гц, для безукоризненного воспроизведения программ вещания (каналы высшего класса) - 30...15 000Гц.

Факсимильные сигналы.

Факсимильные аппараты предназначены для передачи на расстоянии различного рода неподвижных изображений (документов, чертежей, рисунков, фотографий). Для этого с помощью источника света и системы оптических линз формируют световое пятно так, чтобы освещать на передаваемом изображении площадку размером, например, 0,2x0,2 мм. Это световое пятно перемещается сначала вдоль одной строки, затем переходит на другую и движется по ней - и так до конца последней строки. Свет, отражаясь от каждой элементарной площадки, попадает на фотоэлемент и вызывает в его цепи ток (рис.2.2). Значение этого тока зависит от яркости отраженного света, а последняя - от яркости освещенной площадки. Таким образом, при переходе светового пятна на изображении от одной элементарной площадки к другой ток в цепи фотоэлемента меняется пропорционально яркости площадок: мы получаем точную электрическую копию изображения.

Рассмотрим изображение, состоящее только из двух цветов: черного и белого, например, страницу книги, какой-либо чертеж и т.п. Очевидно, каждый элемент изображения будет представлять собой либо черную, либо белую площадку. Черные площадки практически полностью поглощают падающий на них свет. Яркость отраженного ими света при этом настолько ничтожна, что при просмотре черных площадок ток в цепи фотоэлемента не возникает. Наоборот, площадки белого цвета почти полностью отражают падающий на них свет, и при попадании на них светового луча ток в цепи фотоэлемента скачком принимает максимальное значение. Таким образом, перемещая световое пятно, а вслед за ним и фотоэлемент вдоль каждой строки изображения, получаем на выходе фотоэлемента последовательность импульсов (рис. 2.2).

При таком «шахматном» чередовании элементов изображения спектр факсимильного сигнала будет шире, чем для любого другого изображения, поскольку круче фронтов импульсов, чем у прямоуголь­ных, не бывает.

Телекоммуникационные сигналы и сообщения - student2.ru

Рисунок 2.2 – Преобразование изображения в электрический сигнал в факсимильном аппарате

Ширина спектра факсимильного сигнала зависит от скорости раз­вертки изображения и размеров светового пятна.

На стандартном листе бумаги формата А4 в строке помещается примерно 1000 черно-белых элементов изображения при ширине пятна 0,2 мм. Если в факсимильном аппарате скорость развертки составляет 60 строк/мин, т.е. каждая строка считывается за 1 с, то за эту секунду 500 раз будет осуществлен переход с черного на белое, или наоборот. Это означает, что максимальная частота че­редования импульсов равна 500 Гц. При ширине светового пятна 0,1 мм в строке будет в 2 раза больше элементов изображения, и максимальная частота чередования импульсов повысится до 1000 Гц. Так как для сохранения хорошей степени «прямоугольности» импульсов нужно передавать кроме основной гармони­ки еще и несколько высших, то ширина спектра факсимильного сигнала может простираться до 1,5...3,0 кГц.

При увеличении скорости развертки изображения черные и белые площадки будут считываться чаще и, следовательно, спектр факси­мильного сигнала будет шире. При передаче изображений с полуто­нами получается сигнал сложной формы, спектр которого является непрерывным и соединяет все частоты от нуля до максимальной.

Телевизионные сигналы. Любое подвижное изображение - это, как правило, смена через каждые 40 мс одного неподвижного изображения другим (25 кадров в 1 с). За время между сменой кадров нужно успеть просмотреть все неподвижное изображение, которое содержит полмиллиона элементарных площадок или элементов изображения (625 строк по 833 элемента в строке). Значит, каждый элемент изображения придется рассматривать в течение одной полумиллионной доли от отведенных на весь кадр 40 мс. Это короткий отрезок времени - всего две десятимиллиардных доли секунды. Ясно, что ни одно механическое устройство не способно перемещать световое пятно и фотоэлемент по строкам изображения с такой скоростью, это делает электронный луч. Он способен почти мгновенно отклоняться под действием изменяющегося магнитного поля и развертывать «картинки». Это его можно очень точно сфокусировать с помощью специальных электрических «линз».

Изображение, которое нужно превратить в серию электрических импульсов, проектируется с помощью объектива на специальную искусственную «сетчатку». Каждый микроскопический фотоэлемент (представляющий собой капельку светочувст­вительного серебряно-цезиевого сплава) получает свою порцию света и, если его подключить к внешней цепи, создаст ток, пропор­циональный освещенности. Что касается электронного луча, то он как раз и подключает поочередно каждый из 500 000 фотоэлемен­тов к внешней цепи трубки, причем отводится ему на это всего 40 мс, пока не сменится кадр. Таким образом, на одном элементе изображения луч «задерживается» не более 80 миллиардных долей секунды (т.е. 80 не). Величина тока во внешней цепи трубки отражает в каждый момент времени яркость соответствующего элемента изображения, спроектированного объективом на «сетчат­ку» передающей трубки, и является точной электронной копией передаваемого изображения.

Подсчитаем ширину спектра телевизионного сигнала. Пусть чередуются черные и белые площадки (элементы). Всего таких элементов будет 625 строк х 833 элемента = 520 625. В секунду меняется 25 кадров, т.е. 25 х 520 625 = 133 015 625 элементов. Значит, переход с черного на белое, или наоборот, происходит примерно 6 500 000 раз в 1 с. Максимальная частота повторения импульсов равна 6,5 МГц, что и принято за верхнюю границу ширины спектра телевизионного сигнала. Нижней границей считают 50 Гц (нижняя граница сигнала звукового сопровождения).

Во время смены строк и кадров развертывающий луч приемной трубки должен быть погашен. Кроме того, необходимо синхронизиро­вать лучи приемной и передающей трубок. Таким образом, кроме сиг­нала изображения необходимо передавать вспомогательные управ­ляющие импульсы (гасящие и синхронизирующие). Электрический сигнал, включающий в себя сигнал изображения и управляющие им­пульсы, называется полным телевизионным сигналом.

В системах цветного телевидения передаваемое изображение расчленяется с помощью светофильтров на три одноцветных изо­бражения - красное, зеленое и синее. Красные, зеленые и синие лучи попадают каждый на свою телевизионную трубку. В приемном уст­ройстве путем сложения трех одноцветных изображений воспроизво­дится передаваемое цветное изображение,

Таким образом, спектр телевизионного сигнала простирается от 50 Гц до 6,5 МГц.

Наши рекомендации