Моделирование автоволновых процессов
1. Задача: Имеется двумерная активная среда, состоящая из элементов, каждый из которых может находиться в трех различных состояниях: покое, возбуждении и рефрактерности. При отсутствии внешнего воздействия, элемент находится в состоянии покоя. В результате воздействия элемент переходит в возбужденное состояние, приобретая способность возбуждать соседние элементы. Через некоторое время после возбуждения элемент переключается в состояние рефрактерности, находясь в котором он не может быть возбужден. Затем элемент сам возвращается в исходное состояние покоя, то есть снова приобретает способность переходить в возбужденное состояние. Необходимо промоделировать процессы, происходящие в двумерной активной среде при различных параметрах среды и начальном распределении возбужденных элементов.
2. Теория. Рассмотрим обобщенную модель Винера - Розенблюта. Мысленно разобъем экран компьютера на элементы, определяемые индексами i, j и образующими двумерную сеть. Пусть состояние каждого элемента описывается фазой yi,j (t), и концентрацией активатора uij (t), где t -- дискретный момент времени.
Если элемент находится в покое, то будем считать, что yi,j (t) = 0. Если вследствие близости возбужденных элементов концентрация активатора uij (t) достигает порогового значения h, то элемент возбуждается и переходит в состояние 1. Затем на следующем шаге он переключается в состояние 2, затем -- в состояние 3 и т.д., оставаясь при этом возбужденным. Достигнув состояния r элемент переходит в состояние рефрактерности. Через (s - r) шагов после возбуждения элемент возвращается в состояние покоя.
Будем считать, что при переходе из состояния s в состояние покоя 0 концентрация активатора становится равной 0. При наличии соседнего элемента, находящегося в возбужденном состоянии, она увеличивается на 1. Если p ближайших соседей возбуждены, то на соответствующем шаге к предыдущему значению концентрации активатора прибавляется число возбужденных соседей: uij (t + Δt) = uij (t) + p.
Можно ограничиться учетом ближайших восьми соседних элементов.
3. Алгоритм. Для моделирования автоволновых процессов в активной среде необходимо составить цикл по времени, в котором вычисляются фазы элементов среды в последующие моменты времени и концентрация активатора, стирается предыдущее распределение возбужденных элементов и строится новое. Алгоритм модели представлен ниже.
1. Задают число элементов активной среды, ее параметры s, r, h, начальное распределение возбужденных элементов.
2. Начало цикла по t. Дают приращение по времени: переменной t присваивают значение t + Δt.
3. Перебирают все элементы активной среды, определяя их фазы yi,j (t + Δt) и концентрацию активатора ui,j (t + Δt) в момент t + Δt.
4. Очищают экран и строят возбужденные элементы активной среды.
7. Возвращение к операции 2. Если цикл по t закончился, -- выход из цикла.
4. Компьютерная реализация. Ниже представлена программа, моделирующая активную среду и происходяшие в ней процессы. В программе заданы начальные значения фазы yi,j (t + Δt) всех элементов активной среды, а также имеется цикл по времени, в котором расчитываются значения yi,j (t + Δt) в следующий момент t + Δt и осуществляется графический вывод результатов на экран. Параметры среды r = 6, s = 13, h = 5, то есть каждый элемент кроме состояния покоя может находиться в 6 возбужденных состояниях и 7 состояниях рефрактерности. Пороговое значение концентрации активатора равно 5. Программа строит однорукавную волну, осциллятор и препятствие.