Системы с общей памятью – SMP.
В качестве наиболее распространенного примера систем с общей памятью рассмотрим архитектуру SMP[2] – симметричную мультипроцессорную систему. SMP-системы состоят из нескольких однородных процессоров и массива общей памяти, который обычно состоит из нескольких независимых блоков. Слово «симметричный» в названии данной архитектуры указывает на то, что все процессоры имеют доступ напрямую (т.е. возможность адресации) к любой точке памяти, причем доступ любого процессора ко всем ячейкам памяти осуществляется с одинаковой скоростью. Общая схема SMP-архитектуры изображена на Рис. 2.
Рис. 2 Архитектура SMP
Процессоры подключены к памяти либо с помощью общей шины, либо с помощью коммутатора. Отметим, что в любой системе с общей памятью возникает проблема кэширования: так как к некоторой ячейке общей памяти имеет возможность обратиться каждый из процессоров, то вполне возможна ситуация, когда некоторое значение из этой ячейки памяти находится в кэше одного или нескольких процессоров, в то время как другой процессор изменяет значение по данному адресу. В этом случае, очевидно, значения, находящиеся в кэшах других процессоров, больше не могут быть использованы и должны быть обновлены. В SMP-архитектурах обычно согласованность данных в кэшах поддерживается аппаратно.
Очевидно, что наличие общей памяти в SMP-архитектурах позволяет эффективно организовать обмен данными между задачами, выполняющимися на разных процессорах, с использованием механизма разделяемой памяти. Однако сложность организации симметричного доступа к памяти и поддержания согласованности кэшей накладывает существенное ограничение на количество процессоров в таких системах – в реальности их число обычно не превышает 32 – в то время, как стоимость таких машин весьма велика. Некоторым компромиссом между масштабируемостью и однородностью доступа к памяти являются NUMA-архитектуры, которые мы рассмотрим далее.
Системы с неоднородным доступом к памяти – NUMA.
Системы с неоднородным доступом к памяти (NUMA[3]) представляют собой промежуточный класс между системами с общей и распределенной памятью. Память в NUMA-системах является физически распределенной, но логически общедоступной. Это означает, что каждый процессор может адресовать как свою локальную память, так и память, находящуюся на других узлах, однако время доступа к удаленным ячейкам памяти будет в несколько раз больше, нежели время доступа к локальной памяти. Заметим, что единой адресное пространство и доступ к удаленной памяти поддерживаются аппаратно. Обычно аппаратно поддерживается и когерентность (согласованность) кэшей во всей системе
Системы с неоднородным доступом к памяти строятся из однородных базовых модулей, каждый из которых содержит небольшое число процессоров и блок памяти. Модули объединены между собой с помощью высокоскоростного коммутатора. Обычно вся система работает под управлением единой ОС. Поскольку логически программисту предоставляется абстракция общей памяти, то модель программирования, используемая в системах NUMA, обычно в известной степени аналогична той, что используется насимметричных мультипроцессорных системах, и организация межпроцессного взаимодействия опирается на использование разделяемой памяти.
Масштабируемость NUMA-систем ограничивается объемом адресного пространства, возможностями аппаратуры поддержки когерентности кэшей и возможностями операционной системы по управлению большим числом процессоров.
Кластерные системы.
Отдельным подклассом систем с распределенной памятью являются кластерные системы,которые представляют собой некоторый аналог массивно-параллельных систем, в котором в качестве ВУ выступают обычные рабочие станции общего назначения, причем иногда узлы кластера могут даже одновременно использоваться в качестве пользовательских рабочих станций. Кластер, объединяющий компьютеры разной мощности или разной архитектуры, называют гетерогенным (неоднородным). Для связи узлов используется одна из стандартных сетевых технологий, например, Fast Ethernet.
Главными преимуществами кластерных систем, благодаря которым они приобретают все большую популярность, являются их относительная дешевизна, возможность масштабирования и возможность использования при построении кластера тех вычислительных мощностей, которые уже имеются в распоряжении той или иной организации.
При программировании для кластерных систем, как и для других систем с распределенной памятью, используется модель передачи сообщений.