Управление памятью. Функции ОС по управлению памятью. Типы адресов.

Особая роль памяти объясняется тем, что процессор может выполнять инструкции программы только в том случае, если они находятся в памяти. Память распределяется как между модулями прикладных программ, так и между модулями самой операционной системы.
В ранних ОС управление памятью сводилось просто к загрузке программы и ее данных из некоторого внешнего накопителя в память. С появлением мультипрограммирования перед ОС были поставлены новые задачи, связанные с распределением имеющейся памяти между несколькими одновременно выполняющимися программами.

Функциями ОС по управлению памятью в мультипрограммной системе являются:

- отслеживание свободной и занятой памяти;

- выделение памяти процессам и освобождение памяти по завершении процессов;

- вытеснение кодов и данных процессов из оперативной памяти на диск (полное или частичное), когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место;

- настройка адресов программы на конкретную область физической памяти.

Также ОС должна заниматься динамическим распределением памяти — выполнять запросы приложений на выделение им дополнительной памяти во время выполнения. После того как приложение перестает нуждаться в дополнительной памяти, оно может возвратить ее системе. Выделение памяти случайной длины в случайные моменты времени из общего пула памяти приводит к фрагментации. Дефрагментация памяти тоже является функцией операционной системы.

Во время работы операционной системы ей часто приходится создавать новые служебные информационные структуры, такие как описатели процессов и потоков, различные таблицы распределения ресурсов, буферы, используемые процессами для обмена данными, синхронизирующие объекты и т. п. Все эти системные объекты требуют памяти. Защита памяти — это еще одна важная задача операционной системы, которая состоит в том, чтобы не позволить выполняемому процессу записывать или читать данные из памяти, назначенной другому процессу.

Для идентификации переменных и команд на разных этапах жизненного цикла программы используются символьные имена (метки), виртуальные адреса и физические адреса:

- Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

- Виртуальные адреса, называемые иногда математическими, или логическими адресами, вырабатывает транслятор, переводящий программу на машинный язык. Поскольку во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что начальным адресом программы будет нулевой адрес.

- Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды.

Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Диапазон возможных адресов виртуального пространства у всех процессов является одним и тем же. Например, при использовании 32-разрядных виртуальных адресов этот диапазон задается границами 0000000016 и FFFFFFFF16. Тем не менее каждый процесс имеет собственное виртуальное адресное пространство — транслятор присваивает виртуальные адреса переменным и кодам каждой программе независимо.

Задачей ОС является отображение индивидуальных виртуальных адресных пространств всех одновременно выполняющихся процессов на общую физическую память, при этом она отображает либо все виртуальное адресное пространство, либо только определенную его часть. Процедура преобразования виртуальных адресов в физические должна быть максимально прозрачна для пользователя и программиста. Существуют два принципиально отличающихся подхода к преобразованию виртуальных адресов в физические.

В первом случае замена виртуальных адресов на физические выполняется один раз для каждого процесса во время начальной загрузки программы в память. Специальная системная программа — перемещающий загрузчик — на основании имеющихся у нее исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, а также информации, предоставленной транслятором об адресно-зависимых элементах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, то есть операнды инструкций и адреса переходов имеют те значения, которые выработал транслятор. В наиболее простом случае, когда виртуальная и физическая память процесса представляют собой единые непрерывные области адресов, операционная система выполняет преобразование виртуальных адресов в физические по следующей схеме. При загрузке операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический.

Наши рекомендации