Принципы сигнализации в телефонных сетях

Принципы сигнализации в телефонных сетях

Классификация протоколов сигнализации

Межстанционная сигнальная информация передается различными способами, которые можно разделить на три основных класса.

Первый класс - это способы передачи сигналов непосредственно по телефонному каналу (разговорному тракту), называемые иногда «внутриполосными» системами сигнализации. По телефонным каналам (физическим цепям) сигналы могут передаваться постоянным током, токами тональной частоты, индуктивными импульсами и др.

Второй класс - сигнализация по индивидуальному выделенному сигнальному каналу (ВСК). Как правило, в таких системах обеспечиваются выделенные средства передачи сигнальной информации (выделенная емкость канала) для каждого разговорного канала в тракте передачи информации.

Третий класс - это системы общеканальной сигнализации (ОКС). В протоколах этого класса тракт передачи данных сигнализации предоставляется для целого пучка телефонных каналов по принципу адресно-группового использования, т.е. сигналы передаются в соответствии со своими адресами и размещаются в общем буфере для использования каждым телефонным каналом, как и когда это потребуется.

Системы сигнализации первых двух классов разработаны для применения в сетях со старыми технологиями, в которых коммутационные узлы и станции являются в основном аналоговыми и используют принцип замонтированной программы.

Протокол общеканальной сигнализации (ОКС) оптимален для использования в сетях с современными технологиями, основанными на цифровой коммутации и программном управлении.

Системы сигнализации МКТТ

Для успешного взаимодействия на телекоммуникационных сетях как внутри страны, так и на международном уровне протоколы сигнализации должны быть унифицированы. Унификацией и стандартизацией протоколов сигнализации занимался Международный консультативный комитет по телеграфии и телефонии (МККТТ), преобразованный затем в Сектор стандартизации электросвязи Международного союза электросвязи (ITU-T). К числу систем сигнализации МККТТ относятся системы №1, №2, №3, №4, №5, R1 и R2.

Система №1 предусматривает только линейные сигналы на частоте 500 Гц, передаваемые в виде импульсов с частотой 20 Гц. Основные компоненты показаны на рис. 1.2. Данная система является системой прямой посылки вызова, в которой сигналы занятия и освобождения посылаются в виде импульсов 500/20 Гц.

Принципы сигнализации в телефонных сетях - student2.ru

Рис.1.2 – Основные компоненты система №1





Когда система используется на коротких двухпроводных линиях, вместо сигнала 500/20 Гц может применяться низкочастотный сигнал (16,25 или 50 Гц). Время распознавания принимаемого сигнала до 1200 мс. Приемник запоминает принятый сигнал до посылки ответа на него. Импульсный сигнал преобразуется в визуальную индикацию - обычно одна лампочка индикации на канал.

Система №2 предназначалась для поддержки полуавтоматической связи по двухпроводным линиям с использованием сигналов с частотами 600 и 750 Гц. Система имеет ограниченное применение на сетях некоторых стран при полуавтоматических системах обслуживания вызовов, но никогда не использовалась на практике для международной связи.

Система №3 - одночастотная система сигнализации, разрабатывалась в 1946-1949 гг. и была стандартизована ITU-T в 1954 г. Система использует одну частоту 2280±6 Гц для линейной и регистровой сигнализации и предназначена для работы по односторонним каналам связи. Система применяется для полуавтоматического и автоматического режимов работы. Для трансляции цифры номера требуется передача единичного импульса начала, самой цифры в виде четырех последо­вательных импульсов без интервалов между ними и нулевого импульса конца. При приеме сигнала допустимая величина частоты составляет 2280±15Гц. При передаче сигнала допустимая частота составляет 2280±6 Гц, а длительность составляет 300±3 мс.

Система №4 - двухчастотная система сигнализации. Для линейной и регистровой сигнализации используются одни и те же частоты разговорного спектра (внутриполосные) f1=2040 Гц и f2=2400 Гц. Для передачи линейных сигналов используются комбинации трех частотных сигналов: сигнал Х представляет собой посылку частоты 2040 Гц, сигнал Y - посылку частоты 2400 Гц, а сигнал Р - комбинацию частот 2040Гц + 2400Гц.

Для передачи регистровой сигнализации используются двоичные комбинации из одиночных частот (сигнал х =2040 Гц, сигнал у =2400 Гц) с равными длительностями импульсов и пауз, составляющими 35 мс каждый. Посылка цифры требует четыре последовательных интервала: каждый интервал имеет период импульса и период паузы. Система №4 использует односторонние каналы связи и может применяться для любых типов кабеля, однако она несовместима с линиями межконтинентальной связи, использующими обработку речевых сигналов с распределением времени (TASI).

Система №5 была стандартизована ITU-T в 1964 г. в первую очередь для обработки межконтинентальной нагрузки. Система использует шесть частот, разделенных интервалом 200 Гц, в полосе от 700 до 1700 Гц. Регистровые сигналы посылаются импульсами, каждый из которых представляет двухчастотную комбинацию. Один импульс соответствует одной цифре, а между импульсами передается пауза. Для линейной сигнализации система №5 использует внутриполосные двухчастотные сигналы f1=2400 Гц и f2=2600 Гц «от звена к звену» для всех линейных сигналов, кроме сигнала «Вмешательство телефонистки». Еще одним важным отличием системы №5 является использование двусторонних соединительных линий, что обусловлено высокой стоимостью длинных линий и различной для разных частей света телефонной нагрузкой, передаваемой в противоположных направлениях.

Протокол сигнализации R1 использует многочастотную регистровую сигнализацию с кодом «2 из 6» и внутриполосную линейную сигнализацию. R1 является системой сигнализации «от звена к звену» и обладает более высокой



скоростью передачи сигнальной информации, чем у системы R2, однако информационные возможности у R1 несколько ниже, так как каждая комбинация частот имеет только одно значение.

Линейная сигнализация в системе R1 по аналоговым и цифровым каналам осуществляется по-разному. По аналоговым каналам передается непрерывный сигнал с частотой 2600±5 Гц в обоих направлениях. При цифровом варианте линейный сигнал с частотой 2600 Гц обычно не передается по разговорным каналам, кроме случая, когда цифровые системы последовательно соединяются с аналоговыми каналами и образуют составной канал. Цифровой вариант системы R1 предназначен для использования в цифровом тракте 1544 кбит/с. Линейная сигнализация осуществляется по двум выделенным сигнальным каналам, для чего используется восьмой бит каждого канала 1 раз в шесть циклов.

Для регистровой сигнализации R1 использует шесть частот (700, 900, 1100, 1300, 1500 и 1700 Гц) для передачи в прямом направлении адресной информации кодом «2 из 6». Регистровые сигналы передаются в виде импульсов, состоящих из комбинации двух частот, и пауз между импульсами. Длительность сигнала начала набора КР равна 100±10 мс. Все другие сигналы имеют длительность 68±7 мс. Интервал между сигналами должен составлять б8±7 мс.

Протокол сигнализации R2 используется во многих развивающихся странах для национальных и международных соединительных линий. Линейная сигнализация R2 существует в двух совершенно различных модификациях: аналоговая версия линейной сигнализации R2 и цифровая R2D. В аналоговом варианте передача линейных сигналов осуществляется с использованием тональных сигналов вне полосы разговорных частот в системах уплотнения с частотным разделением каналов (ЧРК) на частоте 3825Гц. В цифровом варианте для линейной сигнализации используются выделенные сигнальные каналы цифрового тракта со скоростью 2048 бит/с.

В аналоговой версии R2 сигналы передаются методом «от звена к звену». Исходному состоянию соответствует наличие тонального сигнала. Время распознавания изменения состояния составляет 20±7 мс. Передача линейного сигнала осуществляется наличием (1) или отсутствием (0) тонального сигнала и предназначена исключительно для однонаправленных соединительных линий. При занятии на исходящей АТС отключается тональный сигнал в прямом направлении. Если после занятия нужно сразу же передать сигнал «Разъединение», то тональный сигнал поддерживается в выключенном состоянии не менее 100 мс для достоверного его распознавания на входящей АТС.

Система сигнализации ОКС-7

Стандартизованная на международном уровне система общеканальной сигнализации 7 (ОКС7) предназначена для обмена сигнальной информацией в цифровых сетях связи с цифровыми программно-управляемыми станциями. Она работает по цифровым каналам со скоростью 64 кбит/с., управляя установлением соединений, передавая информацию для технического обслуживания и эксплуатации и может быть использована для передачи других видов информации между станциями и специализированными центрами сетей электросвязями.

Система ОКС7 применяется на международной и национальных сетях, взаимодействуя с другими системами сигнализации и обслуживая соединения на телефонной сети общего пользования (ТФОП), включая цифровую



интегральную сеть связи (ЦСИС), сети подвижной связи (СПС), процессы технической эксплуатации и технического обслуживания этих сетей. При этом обеспечивается взаимодействие с сетевыми базами данных и узлами сетевого управления сетями электросвязи. Наличие системы сигнализации 7 - обязательные условия реализации интеллектуальной сети связи (ИСС). Таким образом, система ОКС7 является ключевым элементом построения современных сетей электросвязи.

Нижние уровни протокола ОКС7 состоят из трех уровней подсистемы передачи сообщения МТР и подсистемы управления соединениями сигнализации SCCP. Эти три уровня МТР представляют собой: уровень 1 звена передачи данных сигнализации, уровень 2 звена сигнализации, уровень 3 сети сигнализации.

Верхние уровни в протоколе ОКС7 включают ТСАР и пользовательские подсистемы, упомянутые выше, а также сервисные элементы прикладного уровня (ASE), подсистему эксплуатации, технического обслуживания и административного управления (ОМАР) и другие прикладные подсистемы. Эти уровни и с пользу ют услуги передачи, предоставляемые уровнями МТР и SCCP. ISUP протокола ОКС7 обеспечивает функции сигнализации, необходимые для обслуживания вызовов в сети ISDN, а также для поддержки дополнительных услуг ISDN. ТСАР обеспечивает набор возможностей для обслуживания вызова без установления соединения. Эти возможности можно использовать в одном узле для того, чтобы вызвать выполнение процедуры в другом узле.

Аппаратная маршрутизация

Первые маршрутизаторы представляли собой специализированное ПО, обрабатывающее приходящие IP-пакеты специфичным образом. Это ПО работало на компьютерах, у которых было несколько сетевых интерфейсов, входящих в состав различных сетей (между которыми осуществляется маршрутизация). В дальнейшем появились маршрутизаторы в форме специализированных устройств. Компьютеры с маршрутизирующим ПО называют программные маршрутизаторы, оборудование - аппаратные маршрутизаторы.

В современных аппаратных маршрутизаторах для построения таблиц маршрутизации используется специализированное ПО ("прошивка"). Для обработки же IP-пакетов используется коммутационная матрица (или другая технология аппаратной коммутации), расширенная фильтрами адресов в заголовке IP-пакета.




Аппаратная маршрутизация

Выделяют два типа аппаратной маршрутизации: со статическими шаблонами потоков и с динамически адаптируемыми таблицами.

Статические шаблоны потоков подразумевают разделение всех входящих в маршрутизатор IP-пакетов на виртуальные потоки; каждый поток характеризуется набором признаков для пакета такие как: IP-адресами отправителя/получателя, TCP/UDP-порт отправителя/получателя (в случае поддержки маршрутизации на основании информации 4 уровня), порт, через который пришёл пакет.

Оптимизация маршрутизации при этом строится на идее, что все пакеты с одинаковыми признаками должны обрабатываться одинаково (по одинаковым правилам), при этом правила проверяются только для первого пакета в потоке (при появлении пакета с набором признаков, не укладывающимся в существующие потоки, создаётся новый поток), по результатам анализа этого пакета формируется статический шаблон, который и используется для определения правил коммутации приходящих пакетов (внутри потока).

Обычно время хранения не использующегося шаблона ограничено (для освобождения ресурсов маршрутизатора). Ключевым недостатком подобной схемы является инерционность по отношению к изменению таблицы маршрутизации (в случае существующего потока изменение правил маршрутизации пакетов не будет "замечено" до момента удаления шаблона).

Динамически адаптируемые таблицы используют правила маршрутизации "напрямую", используя маску и номер сети из таблицы маршрутизации для проверки пакета и определения порта, на который нужно передать пакет. При этом изменения в таблице маршрутизации (в результате работы, например, протоколов маршрутизации/резервирования) сразу же влияют на обработку всех новопришедших пакетов. Динамически адаптируемые таблицы также позволяют легко реализовывать быструю (аппаратную) проверку списков доступа.

Программная маршрутизация

Программная маршрутизация выполняется либо специализированным ПО маршрутизаторов (в случае, когда аппаратные методы не могут быть использованы, например, в случае организации туннелей), либо программным обеспечением на компьютере. В общем случае, любой компьютер осуществляет маршрутизацию своих собственных исходящих пакетов (как минимум, для разделения пакетов, отправляемых на шлюз по умолчанию и пакетов, предназначенных узлам в локальном сегменте сети). Для маршрутизации чужих IP-пакетов, а также построения таблиц маршрутизации используется различное ПО:

- Сервис RRAS (англ. routing and remote access service) в Windows Server

- Демоны routed, gated, quagga в Unix-подобных операционных системах (Linux, FreeBSD и т.д.)

Unicast

Тип передачи данных Unicast (индивидуальный) используется для обычной передачи данных от хоста к хосту. Способ Unicast работает в клиент-серверных и пиринговых (peer-to-peer, от равного к равному) сетях.

В unicast пакетах в качестве IP адреса назначения используется конкретный IP адрес устройства, для которого этот пакет предназначен. IP адрес конкретного устройства состоит из порции адреса сети (в которой находится это устройство) и порции адреса хоста (порции, определяющей это конкретное устойчиво в его сети). Это все приводит к возможности маршрутизации unicast пакетов по всей сети.

Multicast и broadcast пакеты, в отличие от unicast пакетов, имеют свои собственные специальные (зарезервированные) IP адреса для использования их в заголовке пакетов в качестве пункта назначения. Из-за этого, broadcast пакеты в основном ограничены пределами локальной сети. Multicast трафик также может быть ограничен границами локальной сети, но с другой стороны также может и маршрутизироваться между сетями.

В IP сетях unicast адрес является адресом, то есть адресом конечного устройства (например, компьютера). Для типа передачи данных unicast, адреса хостов назначаются двум конечным устройствам и используются (эти адреса) как IP адрес источника и IP адрес получателя.

В течение процесса инкапсуляции передающий хост размещает свой IP адрес в заголовок unicast пакета в виде адреса источника, а ИП адрес принимающего хоста размещается в заголовке в виде адреса получателя. Используя эти два IP адреса, пакеты unicast могут передаваться через всю сеть (т.е. через все подсети).

Multicast

Тип передачи multicast разрабатывался для сбережения пропускной способности в IP сетях. Такой тип уменьшает трафик, позволяя хостам отправить один пакет выбранной группе хостов. Для достижения нескольких хостов назначения используя передачу данных unicast, хосту источнику было бы необходимо отправить каждому хосту назначения один и тот же пакет. С типом передачи данных multicast, хост источник может отправить всего один пакет, который может достичь тысячи хостов получателей.

Примеры multicast передачи данных:

· видео и аудио рассылка

· обмен информацией о маршрутах, используемый в маршрутизируемых протоколах.

· распространение программного обеспечения

· ленты новостей

Multicast клиенты

Хосты, которые хотят получить определенные multicast данные, называются multicast клиентами. Multicast клиенты используют сервисы инициированные (начатые) клиентскими программами для рассылки multicast данных группам.

Каждая multicast группа представляет собой один multicast IP адрес назначения. Когда хост рассылает данные для multicast группы, хост помещает multicast IP адрес в заголовок пакета (в раздел пункта назначения).

Для multicast групп выделен специальный блок IP адресов, от 224.0.0.0 до 239.255.255.255.



Broadcast (Широковещание).

Из-за того, что тип передачи broadcast используется для отправки пакетов ко всем хостам в сети, пакеты использую специальный broadcast IP адрес. Когда хост получает пакет, в заголовке которого в качестве адреса получателя указан broadcast адрес, он обрабатывает пакет так, как будто это unicast пакет.

Когда хосту необходимо передать какую-то информацию всем хостам в сети используется способ передачи данных broadcast. Еще когда адрес специальных сервисов (служб) или устройств заранее неизвестен, то для обнаружения также используется broadcast (широковещание).

Примеры, когда используется broadcast передача данных:

· создание карты принадлежности адресов верхнего уровня к нижним (например, какой IP адрес на конкретном устройстве со своим MAC адресом)

· запрос адреса (в качестве примера можно взять протокол ARP)

· протоколы маршрутизации обмениваются информацией о маршрутах (RIP, EIGRP, OSPF)

Когда хосту нужна информация, он отправляет запрос на широковещательный адрес. Все остальные хосты в сети получат и обработают этот запрос. Один или несколько хостов вложат запрашиваемую информацию и ответят на запрос. В качестве типа передачи данных, отвечающие на запрос будут использовать unicast.

Подобным образом, когда хосту необходимо отправить информацию всем хостам в сети, он создаёт широковещательный пакет с его информацией и передаёт его в сеть.

В отличие от unicast передачи, где пакеты могут быть маршрутизированы через всю сеть, broadcast пакеты, как правило, ограничиваются локальной сетью. Это ограничение зависит от настройки маршрутизатора, который ограничивает сеть и следит за типом широковещания (broadcast).

Существует два типа broadcast передачи данных: направленное широковещание и ограниченное широковещание.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Самостоятельно изучить представленный протокол маршрутизации. Выбор протокола выбирается в соответствии с вариантом.

№ Варианта Протокол № Варианта Протокол
1. RIP 15. IDRP
2. IGRP 16. IS-IS level 3
3. BGR 17. CIDR
4. EIGRP 18. RIPng
5. AODV 19. RIP IP
6. IS-IS 20. RIP IPX
7. OSPF 21. IPX
8. NLSP 22. HELLO
9. HSRP 23. RIP
10. CARP 24. IGRP
11. OLSR 25. BGR
12. TBRPF 26. EIGRP
13. EGP 27. AODV
14. BGP 28. IS-IS



СПИСОК ЛИТЕРАТУРЫ

  1. Организация научно-педагогической практики студентов, обучающихся по магистерским программам направления 210700 «Инфокоммуникационные технологии и системы связи» Методические рекомендации / Сост: В.Н. Дмитриев. Астрахань: Изд-во Астрахан. гос. техн. ун-та, 2013. - 42 с.
  2. Интернет ресурс Cisco: http://www.cs.vsu.ru/~kas/doc/exe/cisco/CCNA05.pdf

3. Гольдштейн Б. С. Сигнализация в сетях связи. — М.: Радио и связь, 1997. —

4. Статья. В.М. Винокуров, А.В. Пуговкин, А.А. Пшенников, Д.Н. Ушарова, А.С. Филатов Маршрутизация в беспроводных мобильных Ad hoc-сетях. https://journal.tusur.ru/ru/arhiv/2-1-2010/marshrutizatsiya-v-besprovodnyh-mobilnyh-ad-hoc-setyah

Принципы сигнализации в телефонных сетях

Наши рекомендации