Помехоустойчивость и достоверность
Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.
Перекрестные наводки на ближнем конце (Near End Cross Talk - NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Рвых/Рнав, где Рвых - мощность выходного сигнала, Рнав - мощность наведенного сигнала.
Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары категории 5 показатель NEXT должен быть меньше -27 дБ на частоте 100 МГц.
Показатель NEXT обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одной экранированной жилы) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вследствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколь-нибудь заметных помех друг для друга.
В связи с тем, что в некоторых новых технологиях используется передача данных одновременно по нескольким витым парам, в последнее время стал применяться показатель PowerSUM, являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передающих пар в кабеле.
Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило,10-4 - 10-6, в оптоволоконных линиях связи - 10-9. Значение достоверности передачи данных, например, в 10-4 говорит о том, что в среднем из 10000 бит искажается значение одного бита.
Искажения бит происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.
Стандарты кабелей
Кабель - это достаточно сложное изделие, состоящее из проводников, слоев экрана и изоляции. В некоторых случаях в состав кабеля входят разъемы, с помощью которых кабели присоединяются к оборудованию. Кроме этого, для обеспечения быстрой перекоммутации кабелей и оборудования используются различные электромеханические устройства, называемые кроссовыми секциями, кроссовыми коробками или шкафами.
В компьютерных сетях применяются кабели, удовлетворяющие определенным стандартам, что позволяет строить кабельную систему сети из кабелей и соединительных устройств разных производителей. Сегодня наиболее употребительными стандартами в мировой практике являются следующие.
· Американский стандарт EIA/TIA-568A, который был разработан совместными усилиями нескольких организаций: ANSI, EIA/TIA и лабораторией Underwriters Labs (UL). Стандарт EIA/TIA-568 разработан на основе предыдущей версии стандарта EIA/TIA-568 и дополнений к этому стандарту TSB-36 и TSB-40A).
· Международный стандарт ISO/IEC 11801.
· Европейский стандарт EN50173.
Эти стандарты близки между собой и по многим позициям предъявляют к кабелям идентичные требования. Однако есть и различия между этими стандартами, например, в международный стандарт 11801 и европейский EN50173 вошли некоторые типы кабелей, которые отсутствуют в стандарте EIA/TAI-568A.
До появления стандарта EIA/TIA большую роль играл американский стандарт системы категорий кабелей Underwriters Labs, разработанный совместно с компанией Anixter. Позже этот стандарт вошел в стандарт EIA/TIA-568.
Кроме этих открытых стандартов, многие компании в свое время разработали свои фирменные стандарты, из которых до сих пор имеет практическое значение только один - стандарт компании IBM.
При стандартизации кабелей принят протокольно-независимый подход. Это означает, что в стандарте отовариваются электрические, оптические и механические характеристики, которым должен удовлетворять тот или иной тип кабеля или соединительного изделия - разъема, кроссовой коробки и т. п. Однако для какого протокола предназначен данный кабель, стандарт не оговаривает. Поэтому нельзя приобрести кабель для протокола Ethernet или FDDI, нужно просто знать, какие типы стандартных кабелей поддерживают протоколы Ethernet и FDDI.
В ранних версиях стандартов определялись только характеристики кабелей, без соединителей. В последних версиях стандартов появились требования к соединительным элементам (документы TSB-36 и TSB-40A, вошедшие затем в стандарт 568А), а также к линиям (каналам), представляющим типовую сборку элементов кабельной системы, состоящую из шнура от рабочей станции до розетки, самой розетки, основного кабеля (длиной до 90 м для витой пары), точки перехода (например, еще одной розетки или жесткого кроссового соединения) и шнура до активного оборудования, например концентратора или коммутатора.
Мы остановимся только на основных требованиях к самим кабелям, не рассматривая характеристик соединительных элементов и собранных линий.
В стандартах кабелей оговаривается достаточно много характеристик, из которых наиболее важные перечислены ниже (первые две из них уже были достаточно детально рассмотрены).
· Затухание (Attenuation). Затухание измеряется в децибелах на метр для определенной частоты или диапазона частот сигнала.
· Перекрестные наводки на ближнем конце (Near End Cross Talk, NEXT). Измеряются в децибелах для определенной частоты сигнала.
· Импеданс (волновое сопротивление) - это полное (активное и реактивное) сопротивление в электрической цепи. Импеданс измеряется в Омах и является относительно постоянной величиной для кабельных систем (например, для коаксиальных кабелей, используемых в стандартах Ethernet, импеданс кабеля должен составлять 50 Ом). Для неэкранированной витой пары наиболее часто используемые значения импеданса - 100 и 120 Ом. В области высоких частот (100-200 МГц) импеданс зависит от частоты.
· Активное сопротивление - это сопротивление постоянному току в электрической цепи. В отличие от импеданса активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля.
· Емкость - это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле, разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше (иногда применяют термин «паразитная емкость»). Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.
Основное внимание в современных стандартах уделяется кабелям на основе витой пары и волоконно-оптическим кабелям.