Важность системы охлаждения для сервера
Для корректной работы серверов очень важно выбрать температурный режим, при котором не будут возникать перегревы. Основными причинами перегрева являются:
– увеличение потребляемой мощности компонентами сервера;
– рост числа ячеек памяти;
– рост тактовых частот процессора и шины памяти;
– в результате перегрева сервер начинает гораздо медленнее работать, ведь ему сложно обрабатывать все процессы при таких высоких температурах.
Последствия:
- перезагрузки сервера и потеря несохраненной информации;
- неправильная работы жёстких дисков, работа с ошибками;
- износ серверов за счет высокой температуры процессоров;
Чтобы не было проблем с системой охлаждения, необходимо выполнять условия:
- обеспечение свободного доступа воздуха к вентиляторам;
- наличие кулеров на комплектующих;
- свободное пространство для выдува горячего воздуха;
- обеспечить внутри корпуса достаточно места для прохода воздуха;
- использовать пылезадерживающие фильтры;
- регулярно производить чистку от пыли;
- примерно раз в год производить полную чистку.
Выбор системы охлаждения
Система охлаждения является очень важной частью системы, поэтому сильно влияет на отказоустойчивость сервера. То, что сервер, который приобретается в собранном виде, уже оснащен как минимум двумя кулерами, еще не гарантирует должного охлаждения, а, следовательно, бесперебойной работы. Следует помнить, что значительное число всякого рода отказов, зависания программ и операционной системы, несанкционированная перезагрузка, заметное снижение производительности сервера, повышенный шум, отказ включаться с первого раза – все это может быть признаком неправильного выбора кулера. Причем в данном аспекте под кулером следует понимать не просто моторчик с вентилятором, а всю систему охлаждения того или иного модуля. Эта система состоит из рассеивающей части, которая чаще всего представлена радиаторами различной формы и размера, а также из устройства обеспечения воздушного потока или конвенции, которые представлены, как правило, многолопастными вентиляторами или крыльчатками. Это так называемая активная воздушная система охлаждения, которая на сегодняшний день используется в 90% компьютеров в мире. Ее достоинства — невысокая сложность установки и небольшая стоимость (в сравнении с более сложными системами охлаждения). Исходя из размеров, производителя и марки зависит уровень шума.
Существуют так же пассивные системы охлаждения, но используются лишь когда возможно безопасное применение. Единственным плюсом в них считается идеальная тишина и относительно легкое обслуживание, которое заключается в периодическом удалении пыли из радиатора. Но эффект от такого охлаждения очень и очень невелик, а увеличить его можно лишь только за счет увеличения размеров радиатора, что не всегда возможно в условиях ограниченного пространства корпуса системного блока, да и габариты других его компонентов зачастую мешают это сделать. Бывают и более сложные, чем воздушные, это активные жидкостные системы охлаждения, включающие в себя систему помп и трубопроводов, по которым непрерывно циркулирует жидкость (обычно это вода). Такая система очень эффективна, малошумная, но большая стоимость и высокая сложность монтажа — не всем подходит. Да и опасность ее разгерметизации, влекущая за собой попадание жидкости на электронные компоненты, и как следствие, короткое замыкание и выход их строя, порой говорят не в ее пользу при выборе. Ну и еще более серьезная система охлаждения, такая же, как и жидкостная, но в ней используется жидкий азот. Эффективность ее на самом высочайшем уровне! Стоимость, чрезвычайная сложность монтажа и обслуживания — тоже! В любом случае при выборе кулера, как для процессора, так и для блока питания или для охлаждения массива жестких дисков, всегда возникает определенный компромисс между шумовым давлением приборов охлаждения и их эффективностью. Причем иногда важнее оказывается эффективность прибора, а иногда не менее важным оказывается низкий уровень шума.
Так, для серверов, в задачу которых входит длительная, непрерывная и бесперебойная работа, важнее эффективность кулера. Шумом можно либо пренебречь, либо установить такой сервер в отдельном помещении, где шумовая нагрузка не будет иметь большого значения. Для серверов же, работающих в жилых помещениях, на звуковых студиях и в медицинских учреждениях, низкий уровень шума бывает важен.
Самым важным «проблемным» параметром, от которого зависит как создаваемый кулером шум, так и его эффективность в качестве элемента охлаждения, является оборотистость вентилятора. Чем больше оборотов в минуту (RPM) делает мотор и лопасти вентилятора, тем выше уровень шума, но тем большее количество воздуха прогоняет система, а, следовательно, выше ее эффективность. Можно смело утверждать, что уровень шума зависит от оборотов на полных 80 процентов. Остальные 20 процентов приходятся на конфигурацию лопастей вентилятора, а также на другие элементы охлаждения, рассекающие воздушный поток и приводящие к образованию вихрей.
Также возможны и чисто механические шумы в подшипниках. Необходимо отметить, что самым надежным и идеальным вариантом для вентиляторов являются подшипники качения, или, как их еще называют, шарикоподшипники. Преимущества их перед подшипниками скольжения несомненны: это повышенная износостойкость и, как следствие, более долгий срок службы. Ведь смазка в подшипниках скольжения, высыхая препятствует нормальному вращению вентилятора, что замедляет его работу, и в конце концов приводит к выходу его из строя.
Такие кулеры просто не нужно приобретать, отсеивая их при выборе. Также, легенда о том, что шум подшипников можно устранить смазкой, не подтверждается практикой. Наоборот, как правило, разборка вентилятора и внесение смазки усиливают шум, а не снижают его, что подтверждается объективными замерами шумового давления. Допустимым принято считать уровень шума от 30 до 40 Дб, но комфортным и желательным все же считается шум громкостью не более 30 Дб.
Немаловажно, что уровень шума напрямую зависит и от диаметра вентилятора, ведь у больших кулеров диаметром 120-140 мм на самых малых оборотах производительность такая же, как у небольших вентиляторов диаметром 80-90 мм, работающих на самых больших оборотах. Понятно, какой из этих вентиляторов будет громче «шуметь» — тот, у которого больше скорость вращения.
Точное число оборотов вентилятора не указывается в его маркировке, а отображается либо литерами L, M, H, означающих «низкие», «средние» и «высокие», либо делится на классы по рабочему току. При важности эффективного охлаждения следует выбирать кулеры с высокими оборотами, а при необходимости малого шума – с низкими. Но не следует забывать о понижении эффективности охлаждения в этом случае.
Компромисс между шумом и эффективностью можно частично решить за счет применения более эффективных радиаторов с менее шумящими вентиляторами. Здесь на первое место выходят такие параметры радиаторов, как их масса, геометрия и материал изготовления. Следует помнить, что медный радиатор заметно эффективнее алюминиевого, но и дороже его, тяжелый эффективнее, но занимает больше места, а радиатор с очень рассеченной геометрией (обилием тонких ребер большой площади) тоже эффективнее, но очень быстро и плотно запылится. Это необходимо учитывать, так как, выбрав подобный радиатор, вместо эффективности можно получить перегрев, стоит лишь прозевать момент образования толстой «шубы» из пыли.
Можно придерживаться этих рекомендаций для выбора системы охлаждения:
- Если в планах не стоит разгон процессора, то стоит посмотреть в сторону бюджетных кулеров. Еще проще покупать процессор в комплектации “BOX”
- Если требуется более производительная система, к примеру, для игр, то стоит выбирать кулер, состоящий из медного радиатора, тепловых трубок и малошумного вентилятора
- Для самого лучшего охлаждения могут служить массивные и дорогие кулеры, либо системы водяного охлаждения, которые требуют навыков в установке и эксплуатации.
Так же стоит обращать внимание на производителя. Самые популярные — Noctua, ArcticCooling, Zalman, Thermaltake, Xilence, CoolerMaster, Scythe.
Существует еще иммерсионное охлаждение, попросту говоря жидкостное. Представляет собой погружение серверов (и вообще всей электроники) в жидкость. Так как сейчас, в большинстве случаев, все пользуются воздушным охлаждением, требуется много вентиляторов, что приводит к большому уровню шума и высокому энергопотреблению. Непосредственное охлаждение методом погружения − новая технология, способная произвести революцию в отрасли дата-центров, но эта она требует компромиссов. Жидкость – отличная охлаждающая среда, потому что она гораздо плотнее воздуха, а плотные носители в целом облегчают изменения тепловой энергии. Циркулирующая в датацентрах чиллерная вода была одним из основных хладоносителей в теплообменниках на протяжении долгого времени. Но воду и электричество нельзя смешивать. Вода проводит электрический ток и вызывает коррозию. Нарушения в водяном контуре может иметь разрушительные последствия для систем и сооружений. Эти доводы тормозят развитие водного охлаждения в дата-центрах большинства провайдеров. Новый метод заключается в выборе других жидкостей для системы охлаждения. Обычная вода заменяется на другое вещество, непроводящее ток и неагрессивное к покрытиям, например, минеральное масло или различные смеси. Выбранный состав позволяет напрямую погрузить систему для более эффективного охлаждения без повреждения компонентов или изменения электромагнитных характеристик чувствительных электронных схем.
Есть два вида погружения: простое и двухфазное.
При простом погружение система полностью погружается в жидкость. Тепло от компонентов поглощается жидкостью, которая циркулируется чиллером или другим теплообменником, и поддерживает температуру на нужном уровне.
Рисунок 1. Схема работы чиллера.
Двухэтапный подход к жидкостному охлаждению используется в таких системах, как Immersion-2 от компании AlliedControl. Серверы и другое оборудование находятся в наполненной ванне. Выбранная этим производителем жидкость, неагрессивная и не проводящая ток, имеет гораздо более низкий температурный порог для кипения - обычно близкий к 49’C по Цельсию (около 120’ по Фаренгейту). Тепло от серверного процессора и других компонентов заставляет жидкость кипеть. Температура снижается, когда появившийся пар конденсируется вокруг охлажденной катушки или другого конденсатора для сбора и повторного использования жидкости. Предполагаемое преимущество двухфазного охлаждения – высокая эффективность. Хладагент не нужно подкачивать дополнительно, поскольку циркуляция идет пассивно. Это означает, что не требуется насос для перемещения массы охлаждающей жидкости, которая остается в защищенном резервуаре. Пар конденсируется на локальном конденсаторе. Необходимый уровень температуры в конденсаторе поддерживается с помощью обычной охлажденной воды. Для поддержки такой системы нужно гораздо меньше энергии, чем в других конструкциях, а цикл с фазами трансформации жидкости-пар-жидкость перерабатывает огромное количество тепла.
Погружное жидкостное охлаждение гарантирует ряд важных преиму-ществ для ЦОДов следующего поколения:
- возможность наращивания плотность серверов
- длительный цикл процесса охлаждения
- снижение затрат на электроэнергию
Погружное жидкостное охлаждение также имеет ряд недостатков:
- неоправданный финансовый вклад
- не востребованность из-за отличного воздушного охлаждения
- угрозы протечек и загрязнения
- проблемы с обслуживанием и утилизацией
- невозможность использования дисковых накопителей в жидкости
- изменение показателя преломления в оптических интерфейсах
Специальная часть
Выбор компонентов
Одним из важнейших аспектов в установке сетевого сервера является облегчение доступа к данным с нескольких компьютеров. Например, если имеется коллекция музыкальных файлов, и есть потребность в прослушивании музыки из коллекции на телевизоре в гостиной комнате, то лучше всего хранить музыку централизованно и прослушивать её по сети. Конечно, можно хранить любую коллекцию файлов на сервере без необходимости копировать многократно ваши данные на несколько систем. Если файловый сервер настроен для использования дискового массива RAID 5 или RAID 6, то он сможет выдержать выход из строя одного жёсткого диска (или даже двух в случае RAID 6) без потери данных - в отличие от информации, хранящейся на единственном жёстком диске настольного ПК. Существует много различных типов файловых серверов и хранилищ. Самый простой способ хранения данных вне ПК заключается в использовании внешнего жёсткого диска, который стоит дёшево, работает быстро, а также обеспечивает гибкие возможности подключения. Если данные умещаются на одном жёстком диске, то такой способ будет самым недорогим для резервирования файлов. Внешние жёсткие диски доступны с разными интерфейсами. Наиболее распространён интерфейс USB 2.0, однако в последнее время стали широко использоваться с интерфейсом USB 3.0. Ещё один популярный интерфейс - FireWire. Существуют две скорости FireWire: 400 и 800 Мбит/с. Большинство внешних дисков, поддерживающих FireWire, оснащено интерфейсом со скоростью 400 Мбит/с. На практике он оказывается даже быстрее USB. Но, к сожалению, этот интерфейс проигрывает USB по универсальности. Самым современным (и быстрым) интерфейсом для внешних накопителей является eSATA. Он работает на скорости 3 Гбит/с и соответствует при этом производительности внутренних портов SATA; сегодня этот интерфейс даёт большую пропускную способность, чем способен дать любой механический жёсткий диск.
Все эти интерфейсы, благодаря которым накопитель подключается напрямую к компьютеру, являются примером сценария напрямую подключённых хранилищ (direct-attached storage, DAS). Сильные стороны DAS кроются в простоте, производительности и цене. С другой стороны, если основной компьютер выключен, вы не сможете получить доступ к файлам, расположенным на таком хранилище. Ещё одно ограничение следует из прямого подключения к основному компьютеру. Как правило, только этот компьютер сможет обратиться к хранящимся файлам, а если вы попытаетесь предоставить накопитель в общий доступ по сети, то при обращении клиентов к файлам на DAS производительность основного компьютера будет снижаться. Ограничения напрямую подключённых хранилищ DAS можно обойти, если не подключать хранилище к компьютеру вообще, использовав для этой цели сеть - мы переходим к сетевым хранилищам (network-attached storage, NAS). Если хранилище NAS включено, то вы сможете получить к нему доступ с любого компьютера в сети. Скорее всего, вы будете подключать хранилище через гигабитный сетевой порт (GigabitEthernet), которого будет достаточно по скорости для большинства пользователей. Если гигабитного сетевого порта недостаточно, то для ваших задач наверняка потребуется high-end устройство с множеством гигабитных портов, ёмким хранилищем и поддержкой функции объединения портов (teaming). Хранилища DAS и NAS часто содержат несколько жёстких дисков. Некоторые оснастки позволяют устанавливать пару винчестеров, а некоторые даже ещё больше. Оснастка может поддерживать массивы RAID 0 (чередование, увеличение скорости по сравнению с одним жёстким диском), RAID 1 (зеркалирование, защита от сбоя одного жёсткого диска) или RAID 5 (чередование с избыточностью, увеличивает скорость и защищает от сбоя одного жёсткого диска). Некоторые high-end хранилища могут даже поддерживать массивы RAID 6, которые аналогичны RAID 5, но могут выдерживать выход из строя двух жёстких дисков. Впрочем, у упомянутых оснасток RAID есть свои ограничения. Стоят они недёшево. Например, хранилище Qnap TS-509 Pro обойдётся в $800 (от 32 тыс. рублей в России) без жёстких дисков, хотя оно поддерживает массивы RAID 5 и 6. С подобной системой, как и с большинством предварительно сконфигурированных хранилищ, вам придётся использовать предварительно установленное рабочее окружение, которое может быть не таким гибким, как предпочитаемое вами программное обеспечение. Наконец, если некоторые розничные хранилища NAS поддерживают расширение, большинство моделей ограничено одним портом eSATA или парой портов USB.
Сборка файлового сервера ничем не отличается от обычного компьютера - точно так же поступают энтузиасты, которые сами собирают свои системы, а не покупают собранные системные блоки в магазине. Конечно, при сборке файлового сервера придётся принять немало решений, среди которых:
- какой объём данных планируется хранить;
- какая избыточность потребуется;
- сколько жёстких дисков планируется использовать.
Если планируется хранить большие объёмы информации, то рекомендуется минимизировать цену одного гигабайта вместо покупки самых ёмких доступных жёстких дисков. Сегодня минимальная стоимость гигабайта наблюдается у жёстких дисков ёмкостью 1,5 Тбайт. Также, если планируется использовать больше восьми или десяти жёстких дисков, то лучше собрать несколько массивов RAID 5 на четырёх или пяти винчестерах каждый, либо использовать массивы RAID 6, чтобы защититься от сбоя более одного жёсткого диска.
Корпус
Потребуется достаточно крупный корпус, чтобы вместить все жёсткие диски. Впрочем, если уже куплен слишком маленький корпус, никто не мешает позднее перенести систему в более крупную модель.
Корпус должен обеспечивать достаточное охлаждение жёстких дисков. В принципе, сегодня можно купить разнообразные модели корпусов, удовлетворяющие этому условию. Для первого файлового сервера потребуется простой корпус. С использованием 120-мм вентилятора для охлаждения жёстких дисков спереди, а также предусмотрением 120-мм вытяжного вентилятора сзади.
Сетевые интерфейсы
Для файлового сервера не помешает гигабитный сетевой интерфейс, который ускорит сетевые операции. Не помешает и поддержка jumbo-кадров, если Ethernet-коммутатор и сетевой адаптер будут с ними работать (большинство новых устройств их поддерживают). Изначально протокол Ethernet предусматривал максимальный размер кадра 1500 байт. Этого было достаточно, когда скорость сети составляла 10 Мбит/с. Когда была представлена гигабитная скорость вместе со стандартом GigabitEthernet, служебная информация, связанная с пакетами небольшого размера, стала весьма существенной. Поэтому индустрия дефакто согласилась поддерживать пакеты большего размера - был выбран размер 9000 байт. То есть вы можете передавать такое же количество данных, что и с пакетами стандартного размера, но число пакетов будет в шесть раз меньше, то же самое касается и объёма служебной информации. На практике можно экономить вычислительные ресурсы CPU и повышать пропускную способность с помощью таких jumbo-кадров, если производительность сети является ограничивающим фактором при передаче файлов. Если же ваш коммутатор не поддерживает jumbo-кадры, то пакеты проходить не будут, поэтому данную функцию придётся отключить.
С другой стороны, можно купить 8-портовыый коммутатор примерно за $40. Большинство современных материнских плат оснащены поддержкой GigabitEthernet "на борту", но если материнская плата не поддерживает гигабитную сеть, то лучше купить сетевую карту PCI-X или PCI Express (PCIe) вместо 32-битной карты PCI.
Блок питания
Внутренние компоненты должны достаточно хорошо охлаждаться. Чем меньше тепла будет создаваться внутри, тем меньше придётся выбрасывать наружу. Поэтому лучше взять экономичные жёсткие диски, которые потребляют меньше энергии, чем стандартные модели. То же самое касается и процессоров - экономичные CPU могут снизить энергопотребление и тепловыделение системы. Рекомендуется взять оба варианта.
Кроме того, лучше всего выбрать эффективный блок питания, соответствующий стандарту "80 PLUS". На рынке присутствуют блоки питания стандартов 80+ Bronze (82%) и 80+ Silver (85%) с разумной ценой. Кроме того, важно правильно подобрать мощность блока питания.
Жёсткие диски потребляют больше всего энергии во время раскручивания пластин. Хороший контроллер жёстких дисков использует отложенный запуск пластин, чтобы минимизировать этот эффект. На данный момент мне не встречались контроллеры, интегрированные в чипсет, которые бы поддерживали эту функцию.
Память
Часто, при самостоятельной сборке, энтузиасты не очень много времени уделяют надёжности работы памяти. Больше интерес проявляют к тактовой частоте и задержке, которые менее важны, чем надёжность. Когда данные поступают в файловый сервер или передаются на клиентские компьютеры, они сначала сохраняются в оперативной памяти. И данные на диске кэшируются тоже в памяти. Лучшие готовые файловые серверы используют память с коррекцией ошибок (errorcorrectingcode, ECC), а самые дешёвые построены на обычной памяти. На мой взгляд, вряд ли имеет смысл собирать высокопроизводительный файловый сервер, и при этом не использовать память ECC. Память вряд ли можно считать источником постоянных ошибок, но время от времени случайные ошибки могут происходить. По оценкам IBM, у 1 Гбайт памяти случайная ошибка происходит раз в неделю. Причиной подобных ошибок являются альфа-частицы в упаковке памяти и космические лучи. Однако у памяти ECC существует дополнительный механизм, который определяет и исправляет ошибки памяти. Стандартная память ECC может определять все 2-битовые ошибки в 64 битах памяти и исправлять 1-битовые ошибки. Есть контроллеры ECC и более высокого класса, например, которые IBM предлагает с памятью Chipkill. Ошибки в областях памяти, которые будут перезаписаны перед чтением, либо в неиспользуемых областях памяти проблем не вызывают, но ошибка памяти, которая каким-либо образом скажется на обработке данных, это уже плохо. Серьёзные серверные материнские платы, например, модели от Tyan и Supermicro, способны фиксировать ошибки памяти в журнале. Менее дорогие материнские платы, такие как Asus CUR-DLS и Asus NCCH-DL, поддерживают память ECC, но не журналируют ошибки памяти.
Существуют чипсеты, которые не поддерживают память ECC вообще, и материнские платы на этих чипсетах тоже не будут поддерживать память ECC. Рекомендуется использовать только материнские платы с поддержкой ECC и устанавливать в них память ECC.
Шины
Большинство старых материнских плат поддерживают 32-битные слоты PCI, которые подключены к общей шине и совместно используют доступную пропускную способность. Если взглянуть на диаграмму чипсета этих материнских плат, то контроллер Ethernet, контроллеры IDE и SATA - все они подключены к шине PCI. Если сложить пропускную способность дисков и Ethernet, то мы упрёмся в теоретическое ограничение 133 Мбайт/с. Работать система, конечно, будет, но всё это приведёт к замедлению файлового сервера.
Существует большое количество старых серверных материнских плат, которые оснащены слотами PCI-X (не путать с PCI Express). Эти слоты более интересны, поскольку они используют шину, которая отделена от 32-битной шины PCI. Если вы установите контроллеры жёстких дисков в слоты PCI-X, то пропускной способности ввода/вывода ничего мешать не будет. Если платформа поддерживает PCI Express, то слоты с количеством линий больше одной окажутся достаточными для домашнего файлового сервера, да и пропускная способность 266 Мбайт/с довольно хороша. Есть ещё одно потенциальное "узкое место", которое нужно учитывать: соединение между южным и северным мостом на материнской плате. Хотя Asus NCCH-DL оснащена 64-битными 66-МГц слотами PCI-X, связь между мостами осуществляется со скоростью всего 266 Мбайт/с. В теории это должно ограничивать пропускную способность ввода/вывода. К счастью, на практике проблемы с этим возникают редко, да и новые чипсеты обычно поддерживают более высокие скорости интерфейса между мостами.
Контроллер
Многие современные материнские платы оснащаются шестью портами SATA 3 Гбит/с. У старых моделей может быть меньше портов, да и они могут использовать менее скоростной стандарт SATA 1,5 Гбит/с. Так что высока вероятность, что придётся докупать в систему карту контроллера. На рынке можно найти разнообразные карты контролеров с разными интерфейсами. Что касается новых систем, то наиболее популярны карты с интерфейсом PCI Express. Данный интерфейс обеспечивает значительную пропускную способность, а старый интерфейс PCI-X даёт достаточную пропускную способность для старых систем. Для менее дорогих систем можно использовать 32-битную шину PCI, хотя она будет ограничивать производительность.
Существуют обычные карты-контроллеры накопителей (hostbusadapters) и RAID-контроллеры. Если использовать терминологию Linux, то карты RAID можно разделить на две группы: FakeRAID и настоящий RAID. Если карта выполняет вычисления информации избыточности XOR самостоятельно, то её можно считать настоящим RAID-контроллером. Иначе она будет использовать CPU для этих вычислений и программные драйверы.
Жесткие диски
Рекомендуются жёсткие диски SATA. На данный момент они доступны в больших ёмкостях, да и стоят весьма доступно. Архитектура SATA относится к ти-пу "точка-точка", то есть пропускную способность интерфейса с другими устройствами делить не придётся. Файловый сервер на жёстких дисках с параллельным интерфейсом ATA (PATA), к каждому каналу подключено два винчестера. Но если один жёсткий диск выйдет из строя, то контроллер, скорее всего, запишет в сбойные диски оба винчестера на канале и повиснет. Если купить приличный RAID-контроллер PATA, то он наверняка будет поддерживать по одному жёсткому диску на канал, чтобы предотвратить эту проблему. Конечно, в случае PATA придётся смириться с множеством кабелей.
Это одна из причин, почему индустрия перешла на интерфейс SATA.
Процессор
Для сервера потребуется суперскоростной CPU. Но хорошей идеей можно считать установку более одного процессора. Один CPU будет нагружен расчётом информации избыточности (необходима для RAID 5), а если же вы выбрали RAID 6, то процессору придётся выполнять ещё больше расчётов, на что потребуется больше ресурсов CPU.
Бесперебойное питание
Независимо от выбранных компонентов, следует использовать UPS, чтобы система была защищена от сбоев электросети. Можно купить дешёвый UPS, но качественный блок бесперебойного питания окупит себя в долгосрочной перспективе. Как минимум, UPS должен позволить выключить файловый сервер стандартным образом до окончания заряда UPS, что требует три-пять минут автономной работы. У большинства UPS присутствует защита от перенапряжения в сети.
Программное обеспечение
Что касается Windows, то под эту систему практически всегда есть драйверы от производителя, которые достаточно хорошо протестированы. Вместе с тем под Linux предлагают драйверы далеко не все производители, поэтому зачастую приходится использовать драйверы, написанные энтузиастами Linux. Конечно, более опытные производители предоставляют драйверы под Linux. Например, все беспроводные контролеры Intel 802.11x снабжаются драйверами напрямую от Intel. Рекомендуем брать комплектующие тех производителей, кто занимается поддержкой своего оборудования под Linux. Старое оборудование, которому исполнилось несколько лет, практически всегда имеет хорошую поддержку со стороны сообщества Linux. Если в драйверах были обнаружены какие-либо ошибки, то велика вероятность, что они исправлены.
Кроме того, вполне возможно, что самые свежие дистрибутивы Linux будут поддерживать наши комплектующие, а чуть более старый дистрибутив Knoppix - не будет. Такая ситуация часто случается с самыми новыми составляющим. Ещё одной полезной возможностью будет загрузочный тест memtest86+. Обычно запускается в течение суток, чтобы убедиться в стабильной работе системы и отсутствии ошибок памяти. Нет никакого смысла устанавливать ОС и программное обеспечение, если система работает нестабильно.
Операционная система
Существует несколько вариантов выбора операционных систем, которые поддерживают программные массивы RAID, например, ОС Microsoft Windows Server с поддержкой RAID 5. Можно даже настроить Windows XP для поддержки RAID 5. Windows не рекомендована по нескольким причинам. Первая: эта система стоит дорого. Цены на Windows Server 2008 начинаются примерно с уровня $999. Ещё одна причина заключается в том, что Windows не даёт таких современных опций по поддержке RAID, как другие операционные системы. Наконец, Windows менее безопасная и надёжная ОС, что немаловажно для файловых серверов.
Существует несколько способов оценки надёжности и безопасности, при этом вы можно найти немало отчётов, некоторые из которых финансируются самими производителями. Например, хороший отчёт опубликован на TheRegister. Хотя он и датирован 2004 годом, основные моменты остаются верными и сегодня. Для 40 лидирующих уязвимостей рейтинг опасности системы Microsoft составил 54,67, а RedHatLinux - 17,96. Затем можно выбрать одну из доступной версии BSD: OpenBSD, FreeBSD и другие. Они бесплатные, при этом отличаются разумной надёжностью и безопасностью. Но самым главным недостатком является то, что эти ОС не такие современные, как Linux в отношении поддержки RAID.
ОС OpenSolaris тоже бесплатная, при этом она надёжная и безопасная. Но аппаратная поддержка у этой ОС весьма ограничена. С другой стороны, здесь вы получите ZFS - на сегодня это наиболее продуманная, надёжная и стабильная файловая система. Кроме того, она включает поддержку RAID 5 и RAID 6. Данная ОС не такая популярная, как Linux, но если вы с ней знакомы, то выбор для файлового сервера окажется весьма достойным.
Наконец, есть Linux, которая тоже бесплатная, надёжная и безопасная. У этой ОС замечательная поддержка составляющих, присутствует поддержка массивов RAID 5, RAID 6, RAID 10 и практически любых других видов RAID. Linux развивается довольно быстро, новое оборудование практически сразу получает поддержку, да и новые программные функции. При обновлении систе-мы Linux, не требуется её перегружать, поэтому системы Linux могут непре-рывно работать многие месяцы или даже годы. Существует множество разных дистрибутивов Linux. Некоторые, подобные RedHat, обеспечивают лучшую долгосрочную поддержку по сравнению с другими дистрибутивами. Другие, подобные Fedora (тоже распространяется RedHat), нацелены на быструю интеграцию в дистрибутив новых программ. Основное преимущество Ubuntu заключается в дружественности к пользователю, поэтому данный дистрибутив наиболее популярен. Вы можете подробнее ознакомиться с десятью самыми популярными дистрибутивами.