Построение модели парной линейной регрессии
По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные (криволинейные). Если статическая связь между явлениями приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражена уравнением какой либо кривой линии (параболы, гиперболы: степенной, показательной, экспоненциальной и т.д. ), то такую связь называют нелинейной или криволинейной.
Для выявления наличия связи, ее характера и направления в статистике используются методы: приведения параллельных данных, аналитических группировок, графический, корреляции и регрессии.
Парная регрессия характеризует связь между двумя признаками: результативным и факторным. Аналитически связь между ними описывается уравнениями:
прямой
параболы
гиперболы и т.д.
Определить тип уравнения можно, исследуя зависимость графически. Однако существуют более общие указания, позволяющие выявить уравнение связи, не прибегая к графическому изображению. Если результативный и факторный признаки возрастают одинаково, примерно в арифметической прогрессии, то это свидетельствует о наличии линейной связи между ними, а при обратной связи – гиперболической. Если результативный признак увеличивается в арифметической прогрессии, а факторный значительно быстрее, то используется параболическая или степенная функция.
Оценка параметров уравнения регрессии в уравнении параболы второго порядка) осуществляется методом наименьших квадратов (МНК), в основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождение параметров модели ( и ), при котором минимизируется сумма квадратов отклонений эмпирических (фактических) значений результативного признака от теоретических, полученных по уравнению регрессии:
Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет следующий вид:
(2.5)
где n – объем исследуемой совокупности (число единиц наблюдения).
В уравнениях регрессии параметр показывает усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов; параметр (а в уравнении параболы и ) – коэффициент регрессии показывает, насколько изменяется в среднем значение результативного признака при изменении факторного на единицу его собственного измерения.
Сопоставив полученные ряды данных x и y, можно наблюдать наличие прямой зависимости между признаками, когда увеличение кредитных вложении сопровождается увеличением суммы активов коммерческих банков. Исходя из этого можно сделать предположение, что связь между признаками прямая и ее можно описать уравнением прямой.