Меры защиты от прямого и косвенного прикосновения
Прямое прикосновение – электрический контакт людей или животных с токоведущими частями, находящимися под напряжением.
Косвенное прикосновение – электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.
Проводящая часть – часть, которая может проводить электрический ток.
Токоведущая часть – проводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением, в том числе нулевой рабочий проводник (но не PEN-проводник).
Открытая проводящая часть – доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции.
Сторонняя проводящая часть – проводящая часть, не являющаяся частью электроустановки.
Защита от прямого прикосновения – защита для предотвращения прикосновения к токоведущим частям, находящимся под напряжением.
Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током, за исключением случаев, специально оговоренных техническими условиями на конкретные изделия. При выполнении изоляции во время монтажа она должна быть испытана в соответствии с требованиями главы 1.8 [5].
В случаях, когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, в том числе в электроустановках напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости в соответствии с требованиями глав 1.7.68-1.7.72 [5].
Защита при косвенном прикосновении – защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции. Термин повреждение изоляции следует понимать как единственное повреждение изоляции.
При применении в качестве защитной меры автоматического отключения питания должны быть присоединены к глухозаземленной нейтрали источника питания в системе TN и заземлены в системах IT и ТТ следующие открытые проводящие части:
а) корпуса электрических машин, трансформаторов, аппаратов, светильников и т. п.;
б) приводы электрических аппаратов;
в) каркасы распределительных щитов, щитов управления, щитков и шкафов, а также съемных или открывающихся частей, если на последних установлено электрооборудование напряжением выше 50 В переменного или 120 В постоянного тока (в случаях, предусмотренных соответствующими главами ПУЭ [5] – выше 25 В переменного или 60 В постоянного тока);
г) металлические конструкции распределительных устройств, кабельные конструкции, кабельные муфты, оболочки и броню контрольных и силовых кабелей, оболочки проводов, рукава и трубы электропроводки, оболочки и опорные конструкции шинопроводов (токопроводов), лотки, короба, струны, тросы и полосы, на которых укреплены кабели и провода (кроме струн, тросов и полос, по которым проложены кабели с зануленной или заземленной металлической оболочкой или броней), а также другие металлические конструкции, на которых устанавливается электрооборудование;
д) металлические оболочки и броню контрольных и силовых кабелей и проводов на напряжения, не превышающие указанные в 1.7.53 [5], проложенные на общих металлических конструкциях, в том числе в общих трубах, коробах, лотках и т. п., с кабелями и проводами на более высокие напряжения;
е) металлические корпуса передвижных и переносных электроприемников;
ж) электрооборудование, установленное на движущихся частях станков, машин и механизмов.
При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или ТТ. При этом характеристики защитных аппаратов и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом в соответствии с номинальным фазным напряжением питающей сети.
В электроустановках, в которых в качестве защитной меры применено автоматическое отключение питания, должно быть выполнено уравнивание потенциалов.
Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток.
Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). В случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ-проводник электроприемника должен быть подключен к PEN-проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата.
Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части (рис. 11.6):
а) нулевой защитный РЕ- или РЕN-проводник питающей линии в системе TN;
б) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и ТТ;
в) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);
г) металлические трубы коммуникаций, входящих в здание: горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.
д) металлические части каркаса здания;
е) металлические части централизованных систем вентиляции и кондиционирования. При наличии децентрализованных систем вентиляции и кондиционирования металлические воздуховоды следует присоединять к шине РЕ щитов питания вентиляторов и кондиционеров;
ж) заземляющее устройство системы молниезащиты 2-й и 3-й категорий;
з) заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;
и) металлические оболочки телекоммуникационных кабелей.
Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.
Рис. 11.6. Система уравнивания потенциалов в здании:
М – открытая проводящая часть; С1 – металлические трубы водопровода, входящие в здание; С2 – металлические трубы канализации, входящие в здание; С3 – металлические трубы газоснабжения с изолирующей вставкой на вводе, входящие в здание; С4 – воздуховоды вентиляции и кондиционирования; С5 – система отопления; С6 – металлические водопроводные трубы в ванной комнате; С7 – металлическая ванна; С8 – сторонняя проводящая часть в пределах досягаемости от открытых проводящих частей; С9 – арматура железобетонных конструкций; ГЗШ – главная заземляющая шина; Т1 – естественный заземлитель; Т2 – заземлитель молниезащиты (если имеется); 1 – нулевой защитный проводник; 2 – проводник основной системы уравнивания потенциалов; 3 – проводник дополнительной системы уравнивания потенциалов; 4 – токоотвод системы молниезащиты; 5 – контур (магистраль) рабочего заземления в помещении информационного вычислительного оборудования; 6 – проводник рабочего (функционального) заземления; 7 – проводник уравнивания потенциалов в системе рабочего (функционального) заземления; 8 – заземляющий проводник.
Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов.
Система дополнительного уравнивания потенциалов должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток.