Элиминирование: сущность, методы
Элиминирование при аддитивной связи
Элиминирование (латинское eliminare - элиминировать - исключать, устранять) – наиболее широко используемый прием анализа экономических показателей. В основе приема элиминирования - устранение, исключение влияния тех из факторов, которые не зависят прямо от анализируемого объекта.
Элиминирование представляет собой логический прием, при помощи которого условно, мысленно исключается, устраняется влияние ряда факторов и выделяется один какой-либо фактор, являющийся объектом исследования. В экономическом анализе прием элиминирования применяется для количественной оценки влияния изменения отдельных факторов на изменение обобщающих (результативных) показателей при детерминированной (выраженной в виде формулы) зависимости между факторами. Элиминирование при различных схемах взаимосвязи показателей осуществляется различными способами.
При аддитивной ( или алгебраической) схеме взаимосвязи между факторами и результатом их взаимодействия элиминирование реализуется в форме приемов сравнения сальдового способа. Пусть результативный показатель определяется аддитивной моделью представленной в следующем виде:
y = a + b - c.
Тогда базисное значение результативного показателя: y0 = a0+ b0 - c0 .
Анализируемое (текущее, отчетное) его значение: y1 = a1 + b1 - c1
Определим общее абсолютное изменение отчетного значения результативного показателя по сравнению с базисным (плановым, прогнозным или фактическим значением за предыдущий период, принятый за базу сравнения):
Dy = y1 - y0 = a1 + b1 - c1 - a0 - b0 + c0.
Необходимо, используя прием элиминирования, определить размер влияния изменения каждого из слагаемых - факторов на общее изменение результативного показателя.
Вводитсяусловная величина, отличающаяся изменением только первого фактора
y/ = a1 + b0 - c0 ,
Определим влияние изменения этого фактора (Da) на общее изменение результативного показателя:
Dy(Da) = y/ - y0 = (a1 + b0 - c0) - (a0+ b0 - c0) = a1 + b0 - c0 - a0- b0 + c0 = a1 - a0 = Da
Для определения влияния изменения второгофактора Db на общее изменение результативного показателя исчисляем второе условное значение: y// = a1 + b1 - c0.
Тогда Dy(Db) = y// - y/ = (a1 + b1 - c0) - (a1+ b0 – c0) = b1 - b0 = Db
А влияние третьего фактора Dc Dy(Dc) = y1 - y// = - c1 + c0 = -Dc
Следовательно, элиминирование при аддитивной схеме связи свелось к изолированному сравнению отчетного значения каждого из факторов-слагаемых с их базисным значением:
Dy = Dy(Da) + Dy(Db) - Dy(Dc) = Da + Db - Dc
Элиминирование в мультипликативных, кратных и комбинированных моделях
Слово "мультипликация" (латинское multiplicatio) означает в переводе "умножение". Применение данной схемы означает, что результативный показатель рассматривается как произведение ряда факторов-сомножителей. Возможно частное от деления одного фактора на другой (они называются кратными) .
Комбинированная схема связи - когда одновременно присутствуют элементы аддитивной и мультипликативной схем зависимостей.
.
При мультипликативной (или кратной) и комбинированной схемах взаимосвязи факторов элиминирование влияния действия всех факторов (кроме одного) осуществляется с помощью следующих приемов и способов:
§ индексных моделей,
§ цепных подстановок,
§ абсолютных и процентных (относительных) разниц (отклонений),
§ интегрального факторного анализа и других.
Индексный метод
Для изучения зависимости результативного показателя (y) от двух факторов-сомножителей (количественного показателя - фактора (a) и качественного показателя - фактора (b)) то есть модели y = a * b, можно воспользоваться следующей системой взаимосвязанных индексов:
Jy = Ja * Jb= а1/а0 * b1/ b0 .
где Jy - общий индекс изменения (динамики) результативного показателя y;
Ja - индивидуальный (факторный) индекс изменения (динамики) фактора a;
Jb - индивидуальный (факторный) индекс изменения (динамики) фактора b;
a0 ,a1,b0, b1 - значения количественного и качественного факторов соответственно в базисном и отчетном (текущем) периодах.
Если модель комбинированная, например
Jy = , то Jy = * ;
Для исчисления величины абсолютного отклонения (изменения):
Dy = -
Абсолютное изменение обобщающего показателя под влиянием количественного фактора определяется как разность между числителем и знаменателем первого сомножителя
Dy(Dа) = -
Влияние изменения качественного фактора на абсолютное изменение обобщающего показателя определяется как разность между числителем и знаменателем второго сомножителя (Jb) индексной модели:
Dy(Db) = -
МЕТОД ЦЕПНЫХ ПОДСТАНОВОК
Сущность способа (приема) цепных подстановок состоит в определении влияния отдельных факторов на изменение результата их взаимодействия (обобщающего показателя) путем последовательной замены базисных значений факторов, входящих в модель обобщающего показателя, фактическими значениями (получения условного значения обобщающего показателя) и сравнения полученной в результате замены условной величины обобщающего показателя с его предшествующим значением, существующим исходным (базисным) или рассчитанным ранее до замены изучаемого фактора.
Условную величину обобщающего показателя, характеризующую его значение при условии изменения лишь одного исследуемого фактора и неизмененном состоянии остальных факторов принято называть подстановкой. При числе факторов-сомножителей более двух, от которых зависит результат их взаимодействия (обобщающий показатель), приходится определять сразу же несколько взаимосвязанных подстановок (цепочку подстановок). Поэтому данный способ расчета носит название приема цепных подстановок. При этом в первой подстановке все факторы, кроме одного, принимаются как находящиеся в базисном значении. При изучении цепи разложения результативного показателя, состоящего из n факторов-сомножителей, помимо базисного и фактического значений обобщающего показателя, необходимо вычислить дополнительно (n - 1 подстановок).
Если y = a b.
Тогда разность между условным значением результативного показателя полученным на основе первой подстановки, и исходным, базисным значением обобщающего показателя характеризует влияние изменения фактора a на общее изменение результативного показателя:
Dy(Da) = y/ - y0 = a1 b0 - a0 b0
Влияние изменения второго фактора b на общее изменение результативного показателя определяется как разность между фактическим значением результативного показателя и его условным значением, полученным на основе первой подстановки, то есть:
Dy(Db) = y1 - y/ = a1 b1 - a1 b0
Способ цепных подстановок отличает большая трудоемкость расчетов, возрастающая с увеличением числа факторов. Кроме того, допущенная при вычислении какой-либо из подстановок ошибка может быть не обнаруженной, так как она одновременно исказит размер влияния двух смежных факторов на одну и ту же величину, но с противоположным знаком (+и -).
В целях ликвидации указанного недостатка, а также уменьшения трудоемкости расчетов разработан и применяется модифицированный (технически упрощенный) вариант цепной подстановки, получивший название способа абсолютных разниц (отклонений).
Способ абсолютных разниц
Сущность расчетов по способу абсолютных разниц состоит в том, что размер влияния каждого фактора определяется изолированно путем умножения абсолютного отклонения фактического значения искомого фактора от базисного значения других факторов-сомножителей, входящих в модель разложения обобщающего показателя. При этом, согласно вышеназванным общим правилам порядка подстановок, другие факторы-сомножители принимаются в расчет в базисных или отчетных (текущих) значениях и в зависимости от месторасположения анализируемого фактора в цепочке (модели) взаимодействующих сомножителей: факторы, находящиеся в цепочке ранее (впереди) исследуемого, участвуют в расчетах в текущих (отчетных) значениях, а стоящие (находящиеся) после исследуемого фактора - в базисных значениях.
Пусть результативный y = a b c.
Тогда Dy(Da) = (a1 - a0) b0 c0 = Da b0 c0
Dy(Db) = (b1 - b0) a1 c0 = a1Db c0
Dy(Dc) = (c1 - c0) a1 b1 = a1 b1Dc
Суммарное влияние всех трех факторов должно равняться общему абсолютному отклонению результативного показателя, то есть:
Dy(Da) + Dy(Db) + Dy(Dc) = Dy = y1 - y0
Способ абсолютных разниц имеет определенные преимущества перед способом (приемом) цепных подстановок. Эти преимущества заключаются в уменьшении по сравнению с цепными подстановками трудоемкости расчетов и исключении скрытой ошибки, которая может иметь место в расчетах по способу цепных подстановок.
Благодаря изолированному (независимому, обособленному друг от друга) расчету влияния каждого фактора на результат их взаимодействия легко обнаруживается при этом способе ошибка в вычислениях, поскольку алгебраическая сумма результатов влияния всех факторов должна равняться общему изменению обобщающего показателя. Отсутствие такого равенства будет свидетельствовать о наличиии ошибок в методологии или арифметике расчета влияния факторов на результат их взаимодействия. Балансовая проверка суммарного влияния всех факторов служит средством контроля за правильностью выполнения расчетов.
Способ относительных (процентных) разниц
Способ процентных разниц является наименее трудоемким вариантом цепной подстановки. Он представляет из себя цепную подстановку, выраженную в относительной форме через проценты. Расчет влияния факторов на результат их взаимодействия способом процентных разниц сводится к исчислению разницы в процентах (или индексах) изменения двух взаимосвязанных показателей-факторов, один из которых является произведением предыдущего или совокупности предыдущих показателей-факторов на исследуемый (искомый) фактор. Алгоритм расчета влияния отдельных факторов на результат их взаимодействия способом процентных разниц можно представить в общем виде следующим образом.
Пусть результативный показатель y = a b c, тогда
Dy(Da) = * y0 = (Ja - 1) * y0,
где Ja = ,
а Ja - 1 - темп изменения фактора.а по сравнению с базисным уровнем.
Dy(Db) = = (Jb - Ja) * y0,Dy(Dc) =(Jy - Jb) * y0
Cпособ процентных разниц является также разновидностью способа цепных подстановок, поэтому для него характерен тот же недостаток, что и для способа цепных подстановок, а именно, возможность появления скрытой ошибки, не выявляемой обычными правилами (способами) проверки.
Преимущество способа процентных разниц перед приемом (способом) абсолютных отклонений заключается в следующем:
• возможность одновременного получения результатов влияния каждого фактора на изменение обобщающего показателя в относительном (в процентах и индексах) и в абсолютном выражении;
отсутствие необходимости определения значений каждого из факторов (удельных показателей), так как расчеты влияния факторов ведутся на основе сравнения или исчисления показателей в процентах, которые, как правило, имеются в действующей отчетности предприятий и их объединений