Понятие и классификация моделей
Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.
По своей природе модели делятся на физические, символические и смешанные.
Физические модели воплощены в каких-либо материальных объектах, имеющих естественное или искусственное происхождение, и подразделяются на модели подобия и аналоговые. Первые характеризуются масштабными изменениями, выбираемыми в соответствии с критериями подобия, вторые - основаны на известных аналогиях между протеканием процессов в различных системах. Примером аналоговой модели является экономический эксперимент, когда результаты экспериментирования на одном или нескольких предприятиях переносятся на совокупность объектов близкой экономической природы.
Символические модели характеризуются тем, что параметры реального объекта и отношения между ними представлены символами: семантическими, математическими, логическими. Наряду со словесными описаниями функционирования объектов - сценариями - сюда также относятся схематические модели: графики и блок-схемы, логические блок-схемы и таблицы решений, номограммы, а также математические описания - математические модели.
Смешанные модели применяются тогда, когда часть элементов и процессов не удается описать символами, и они моделируются физически. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счет обмена информацией с ней.
По целевому назначению различают модели структуры, функционирования и стоимостные.
Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:
- канонические модели, характеризующие взаимодействие объекта с окружением через входы и выходы:
- модели внутренней структуры, характеризующие состав компонентов объекта и связи между ними;
- модели иерархической структуры (дерево системы), в которых объект расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.
Модели структуры обычно представлены в виде блок-схем, реже графов и матриц связей.
Модели функционирования включают широкий спектр символических моделей:
- модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до прекращения функционирования;
-модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объектов;
- информационные модели, отображающие во взаимосвязи источники и потребителей информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;
-процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, в частности, реализации процедур принятия управленческих решений;
-временные модели, описывающие процедуру функционирования объектов во времени и распределение ресурса "время" по отдельным компонентам объекта.
Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны. Их совместное использование позволяет проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.
В зависимости от степени формализации связей между факторами различают аналитические и алгоритмические модели.
Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.
Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. Они применяются, когда модель сложной системы гораздо легче построить в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий - разветвлений хода течения процесса.
В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.
В детерминированных моделях ни целевая функция, ни уравнения связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.
Для стохастических моделей характерно наличие факторов, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация таких моделей в большинстве случаев осуществляется методами имитационного моделирования.
В зависимости от фактора времени различают динамические и статические модели.
Модели, в которых входные факторы, а, следовательно, и результаты моделирования явно зависят от времени, называются динамическими, а модели, в которых зависимость от времени либо отсутствует совсем, либо проявляется слабо или неясно, называются статическими.
Структура процесса моделирования и содержание его этапов.
Моделирование систем - это метод, с помощью которого, варьируя в эксперименте потоки материалов или предметов через операции или процессы, можно определить влияние изменений различных переменных в системе. Моделирование представляет собой средство опытной проверки идей и представлений в условиях, которые невозможно было бы создать для реального эксперимента, учитывая связанные с этим затраты, время и риск. Процесс моделирования обязательно включает и построение абстракций и умозаключения по аналогии и конструирование новых систем. Основная особенность моделирования в том, что это метод опосредованного познания с помощью объектов заменителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект.
Процесс моделирования включает три элемента: субъект (исследователь); объект исследования; модель, опосредующая отношение познающего субъекта и познаваемого объекта.
Первый этап моделирования - построение модели. Он предполагает наличие некоторых знаний об объекте - оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства оригинала и модели. Любая модель замещает оригинал лишь в строго ограниченном смысле, и изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Из этого следует, что для одного объекта может быть построено несколько специализированных моделей, концентрирующих внимание на определенных сторонах исследуемого объекта ила же характеризующих объект с разной степенью детализации.
Второй этап моделирования - изучение модели. Здесь модель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели.
Третий этап моделирования - перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые не нашли отражения или были изменены при построении модели.
Четвертый этап моделирования -практическая проверка полученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта.
Моделирование представляет собой циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются, а исходная модель постепенно совершенствуются. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. Таким образом, в методологии моделирования заложены большие возможности саморазвития.
37.Имитационное моделирование социально-экономических систем.
Идея метода имитационного моделирования состоит в том, что вместо аналитического описания взаимосвязей между входами, состояниями и выходами строят алгоритм, отображающий последовательность развития процессов внутри исследуемого объекта, а затем "проигрывают" поведение объекта на ЭВМ. Следует отметить, что поскольку для имитационного моделирования зачастую требуются большие выборки статистических данных, поэтому издержки, связанные с имитацией, почти всегда высоки по сравнению с расходами, необходимыми для решения задач на небольшой аналитической модели. Нужно сопоставлять затраты с ценностью информации, которую ожидают получить.
Имитационная модель - вычислительная процедура, формализовано описывающая изучаемый объект и имитирующая его поведение. При ее составлении нет необходимости упрощать описание явления, отбрасывая даже существенные детали, чтобы втиснуть его в рамки модели, удобной для применения тех или иных известных математических методов анализа. По своей форме имитационная модель является логико-математической (алгоритмической), выраженной на языках математики и логики.
Имитационные модели, являющиеся особым классом математических моделей, принципиально отличаются от аналитических тем, что использование ЭВМ в процессе их реализации играет определяющую роль. Имитационные модели не накладывают жестких ограничений на используемые исходные данные, позволяют в процессе исследования использовать всю собранную информацию вне зависимости от ее формы представления и степени формализации.
Различают два вида имитационных моделей:
- детерминированные - модели с фиксированными входными параметрами и параметрами модели;
- статистические, в которых входные параметры и параметры модели имеют случайные значения.
Для имитационного моделирования характерна имитация элементарных явлений, составляющих исследуемый процесс с сохранением их логической структуры, последовательности протекания во времени, характера и состава информации о состоянии процесса.
Методы имитационного моделирования позволяют сочетать формально математические методы исследования с интуицией и опытом специалистов. Для того чтобы такое сочетание осуществить наиболее эффективно, необходимо максимально сократить по времени, облегчить и упростить общение специалистов с машиной. Нужно, чтобы указанные специалисты могли при формировании модели и воспроизведении процесса на ЭВМ оперировать привычными понятиями и представлениями, а также получали бы информацию в удобной для восприятия и анализа форме. В связи с этим появилась настоятельная необходимость в разработке программных средств, специально приспособленных к задаче написания программ моделирования.