Теория центральных мест Кристаллера
Центральными местами В.Кристаллер называет экономические центры, которые обслуживают товарами и услугами не только себя, но и население своей округи (зоны сбыта). Согласно В. Кристаллеру, зоны обслуживания и сбыта с течением времени имеют тенденцию оформляться в правильные шестиугольники (пчелиные соты), а вся заселенная территория покрывается шестиугольниками без просветов (кристаллеровская решетка). Благодаря этому минимизируется среднее расстояние для сбыта продукции или поездок в центры для покупок и обслуживания. Теория В. Кристаллера объясняет, почему одни товары и услуги должны производиться (предоставляться) в каждом населенном пункте (продукты первой необходимости), другие — средних поселениях (обычная одежда, основные бытовые услуга и т.п.), третьи — только в крупных городах (предметы роскоши, театры, музеи и т.д.)
Тип иерархии определяется числом центральных мест данного уровня. Число подчиненных центральных мест, увеличенное на единицу, обозначается буквой К. Любой центр всегда имеет зависимое от него одинаковое количество поселений, занимающих более низкую ступень.
Рассмотрим, например, случай, когда имеется трехступенчатая иерархия поселений: город — поселок — деревня. Тогда при К = 7 вокруг каждого города будет расположено 6 поселков, а вокруг каждого поселка — 6 деревень, т.е. вокруг города будет всего 6 поселков и 36 деревень. При четырехступенчатой иерархии (город — поселок — поселение — деревня) вокруг города разместятся 6 поселков, 36 поселений и 216 деревень и т.д. Общая формула для отражения данной зависимости имеет следующий вид:
Mn =(K − 1)n ,
где Mn — число зависимых мест на той или иной степени иерархии; п — ступень иерархии.
Количество возможных типов иерархии в принципе может быть любым. Однако наибольшее внимание В. Кристаллер и его последователи уделяли анализу трех типов, или вариантов, иерархии при К = 3, 4, 7. Эти варианты иерархии систем расселения интерпретируются следующим образом.
Вариант при К = 3 обеспечивает оптимальную конфигурацию рыночных зон (территорий, население которых приобретает товары и услуги в данном центральном месте). Обслуживание территории достигается наименьшим возможным числом центральных мест. При этом каждое центральное место обслуживается тремя центральными местами следующего, более высокого уровня иерархии и находится на равных расстояниях от них.
Вариант при К = 4 создает наилучшие условия для строительства транспортных путей, так как в этом случае наибольшее число центральных мест будет расположено на одной трассе, соединяющей более крупные города, что обеспечит минимальные издержки на строительство дороги, т.е. данное центральное место будет находиться на кратчайшем расстоянии до двух ближайших центров более высокого уровня иерархии.
Вариант при К = 7 представляется целесообразным, если необходим четкий административный контроль. В этом случае все центральные места, зависимые от данного места, полностью входят в его зону.
Правило Ципфа.
Правило Ципфа ("ранг-размер") - модель расчета численности населения любого города страны (иерархия городов). Если территория представляет собой целостный экономический район, то население n-ого по размеру города составляет 1/n числа жителей самого крупного города.
То есть во 2м городе живёт 1/2 населения от 1го, в 3ем - 1/3, в 4м - 1/4 и т д.
Мировые города.
Мировой город – это город, считающийся важным элементом мировой экономической системы. Такой город имеет ключевое значения для больших регионов Земли и оказывает на них серьезное политическое, экономическое и культурное влияние. Чаще всего отличаются от внутригосударственной периферии.
Они подразделены на 3 класса: альфа(Нью-Йорк, Лондон, Париж, Сингапур, Токио, Гонконг, Пекин, Милан, Сидней, Москва), бета (Барселона, Вашингтон, Сан-Франциско, Бухарест, Осло) и гама (Панама, Ванкувер, Сиэтл, Санкт-Петербург).