Термодинамика (№№ 231-250)

Пример 1. Кислород массой m = 2 кг занимает объем V1 = 1 м3 и находится под давлением P1 = 0,2 МПа. После нагревания при постоянном давлении он занял объем V2 = 3 м3, а затем его давление в ходе изохорического процесса стало равным P3 = 0,5 МПа. Найти изменение внутренней энергии газа DU, совершенную им работу A и количество теплоты Q, переданной газу. Построить график процесса.

Термодинамика (№№ 231-250) - student2.ru Решение. График процесса приведен на рис. 6.

Работа расширения газа A12 при изобарическом переходе из состояния 1 в состояние 2 вычисляется по формуле

Термодинамика (№№ 231-250) - student2.ru

Работа газа A23 при изо-хорическом переходе из сос-тояния 2 в состояние 3 равна нулю.

Таким образом, полная работа A, совершаемая газом при переходе из состояния 1 в состояние 3, равна

Термодинамика (№№ 231-250) - student2.ru .

Изменение внутренней энергии газа при переходе 1®2®3 определяется соотношением

Термодинамика (№№ 231-250) - student2.ru (1)

где i - число степеней свободы газа;

T1 и T3 - температура газа соответственно в начальном и конечном состояниях.

Уравнения Менделеева - Клапейрона для состояний 1 и 3 запишутся в виде

Термодинамика (№№ 231-250) - student2.ru (2)

Термодинамика (№№ 231-250) - student2.ru (3)

После совместного решения уравнений (1)-(3) получим выражение для изменения внутренней энергии газа:

Термодинамика (№№ 231-250) - student2.ru

Согласно первому началу термодинамики, теплота Q, переданная газу, расходуется на совершение газом работы и на изменение его внутренней энергии:

Q = A + D1U.

Произведем вычисления, учитывая, что для двухатомных молекул кислорода Термодинамика (№№ 231-250) - student2.ru кг/моль, а число степеней свободы i = 5:

A = A12 = 0,2×106×(3 - 1) = 0,4×106 Дж = 0,4 МДж;

Термодинамика (№№ 231-250) - student2.ru ×МДж;

Q = (3,25 + 0,4) = 3,65 МДж.

Пример 2. Тепловой двигатель, работающий по циклу Карно, получает тепло от нагревателя при температуре 227 °С в количечтве Q1=5 кДж за цикл и передает часть его окружающему воздуху. При этом двигатель совершает за цикл работу, равную 2 кДж.

С каким к.п.д. работает двигатель? Какова температура окружающего воздуха и как изменяется его энтропия за счет работы двигателя в течении одного цикла?

Р е ш е н и е. Коэффициент полезного действия двигателя, работающего по циклу Карно, равен

Термодинамика (№№ 231-250) - student2.ru (1)

где Q2 - тепло, передаваемое двигателем холо-дильнику (окружающей среде);

A - работа;

Т2 – температура холодильника (окружающей среды - воздуха);

Т1 - температура нагревателя.

Отсюда к.п.д.:

Термодинамика (№№ 231-250) - student2.ru .

Температура окружающей среды (Т1=227+273=500К):

Т21(1-h)=500(1-0,4)=300К=270С.

Изменение энтропии окружающей среды определим по формуле Клаузиуса:

Термодинамика (№№ 231-250) - student2.ru =0,01кДж/К=10Дж/К.

Заметим, что энтропия окружающей среды возрастает, так как она получает тепло от теплового двигателя.

Электростатика

Пример 1. Два точечных электрических заряда q1 = 1 нКл и q2 = - 2 нКл находятся в воздухе на расстоянии d = 10 см друг от друга. Определить напряженность Термодинамика (№№ 231-250) - student2.ru и потенциал j поля, создаваемого этими зарядами в точке А, удаленной от заряда q1 на расстояние r1 = 9 см и от заряда q2 - на расстояние r2 = 7 см.

Решение. Согласно принципу суперпозиции электрических полей каждый заряд создает поле независимо от присутствия в пространстве других зарядов. Поэтому напряженность электрического поля в искомой точке может быть найдена как геометрическая сумма напряженностей полей, создаваемых каждым зарядом в отдельности: Термодинамика (№№ 231-250) - student2.ru . Напряженности электрического поля, создаваемого в воздухе (e = 1) зарядами q1 и q2, равны

Термодинамика (№№ 231-250) - student2.ru , Термодинамика (№№ 231-250) - student2.ru . (1)

Вектор Термодинамика (№№ 231-250) - student2.ru (рис. 7) направлен по силовой линии от заряда q1, так как этот заряд положителен; вектор Термодинамика (№№ 231-250) - student2.ru направлен также по силовой линии, но к заряду q2, поскольку этот заряд отрицателен.

Термодинамика (№№ 231-250) - student2.ru

Модуль вектора Термодинамика (№№ 231-250) - student2.ru найдем по теореме косинусов:

Термодинамика (№№ 231-250) - student2.ru , (2)

где a - угол между векторами Термодинамика (№№ 231-250) - student2.ru и Термодинамика (№№ 231-250) - student2.ru , который мо-жет быть найден из треугольника со сторонами r1, r2 и d:

Термодинамика (№№ 231-250) - student2.ru .

Во избежание громоздких записей значение cosa удобнее вычислить отдельно:

Термодинамика (№№ 231-250) - student2.ru .

Подставляя выражения Е1 и Е2 из уравнений (1) в формулу (2) и вынося общий множитель за знак корня, получаем

Термодинамика (№№ 231-250) - student2.ru .

В соответствии с принципом суперпозиции потен-циал поля, создаваемого двумя зарядами q1 и q2, равен алгебраической сумме потенциалов, т.е.

Термодинамика (№№ 231-250) - student2.ru . (3)

Потенциал электрического поля, создаваемого в воздухе (e = 1) точечным зарядом q на расстоянии r от него, вычисляется по формуле

Термодинамика (№№ 231-250) - student2.ru . (4)

Согласно формулам (3) и (4),

Термодинамика (№№ 231-250) - student2.ru .

Учтем, что

Термодинамика (№№ 231-250) - student2.ru ,

и произведем вычисления:

Термодинамика (№№ 231-250) - student2.ru

Термодинамика (№№ 231-250) - student2.ru ×103 В/м Термодинамика (№№ 231-250) - student2.ru кВ/м.

Термодинамика (№№ 231-250) - student2.ru 157 В.

При вычислении Е знак заряда q2 опущен, так как он определяет направление вектора напряженности, которое было учтено при графическом изображении вектора Термодинамика (№№ 231-250) - student2.ru (см. рис. 7).

Пример 2.Конденсатор емкостью C1 = 3 мкФ был заряжен до разности потенциалов U1 = 40 В. После отключения от источника тока его соединили параллельно с другим незаряженным конденсатором емкостью C2 = 5 мкФ. Какая энергия W израсходуется на образование искры в момент присоединения второго конденсатора?

Решение. Энергия, израсходованная на образование искры, равна

W = W1- W2, (1)

где W1 - энергия, которой обладал первый конден-сатор до присоединения к нему второго конден-сатора;

W2 - энергия, которую имеет батарея, состав-ленная из двух конденсаторов.

Энергия заряженного конденсатора определяется по формуле

Термодинамика (№№ 231-250) - student2.ru , (2)

где C - емкость конденсатора;

U - разность потенциалов между его обкладками.

Выразив в уравнении (1) энергии W1и W2 по формуле (2) и приняв во внимание, что общая емкость параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов, получим

Термодинамика (№№ 231-250) - student2.ru , (3)

где U2 - разность потенциалов на зажимах батареи конденсаторов.

Учитывая, что общий заряд q после подключения второго конденсатора остался прежним, выразим разность потенциалов U2 следующим образом:

Термодинамика (№№ 231-250) - student2.ru . (4)

Подставив выражение (4) в формулу (3), найдем

Термодинамика (№№ 231-250) - student2.ru .

Произведем вычисления:

Термодинамика (№№ 231-250) - student2.ru 1,5×10-3 Дж.

Постоянный ток

Пример 1.ПотенциометрссопротивлениемRп= 100 Ом подключен к батарее, ЭДС которой e = 150 В, а внут-реннее сопротивление r = 50 Ом, как показано на рис. 8.

Определить:

1) показание вольтметра, соединенного с одной из клемм потенциометра В и подвижным контактом А, установленным посередине потенциометра, еслисопротивление вольтметраравно RV =500 Ом;

2) разность потенциалов между теми же точками потенциометра при отключении вольтметра.

Термодинамика (№№ 231-250) - student2.ru

Решение. Показание вольтметра, подключенного к точкам А и В (рис. 8), или разность потенциалов U1 между точками А и В, определяем по формуле

U1 = I1R1, (1)

где R1 - сопротивление параллельно соединенных вольтметра и половины потенциометра;

I1 - суммарная сила тока в ветвях этого соединения (она равна силе тока в неразветвленной части цепи).

Силу тока I1 найдем по закону Ома для полной цепи:

Термодинамика (№№ 231-250) - student2.ru , (2)

где R - сопротивление внешней цепи. Оно является суммой двух сопротивлений:

Термодинамика (№№ 231-250) - student2.ru . (3)

Перепишем формулу (2) с учетом выражения (3):

Термодинамика (№№ 231-250) - student2.ru (4)

Сопротивление R1 найдем по формуле параллельного соединения проводников

Термодинамика (№№ 231-250) - student2.ru ,

откуда

Термодинамика (№№ 231-250) - student2.ru . (5)

Произведем промежуточные вычисления по формулам (5),(4) и (1):

Термодинамика (№№ 231-250) - student2.ru 45,5 Ом,

Термодинамика (№№ 231-250) - student2.ru 1,03 А,

U1 = 1,03×45,5 = 46,9 В.

Разность потенциалов между точками А и B при отключенном вольтметре равна произведению силы тока I2 на половину сопротивления потенциометра:

Термодинамика (№№ 231-250) - student2.ru (6)

Силу тока в цепи при отключенном вольтметре определяем по формуле

Термодинамика (№№ 231-250) - student2.ru (7)

Подставив выражение (7) в формулу (6), найдем разность потенциалов U2:

Термодинамика (№№ 231-250) - student2.ru

После вычислений получим

Термодинамика (№№ 231-250) - student2.ru 50 В.

Пример 2.Найти мощность, выделяемую электри-ческим током в нагрузке R = 25 Ом, если последняя подключена к источнику постоянного тока с внут-ренним сопротивлением r = 0,1 Ом и током короткого замыкания Iк.з = 150 А.

Решение. Записываем выражение для определения мощности, выделяемой на нагрузке R:

P = I2R. (1)

Согласно закону Ома для замкнутой цепи

Термодинамика (№№ 231-250) - student2.ru . (2)

Запишем соотношение, связывающее ток короткого замыкания Iк.з, ЭДС источника e и его внутреннее сопротивление r:

Термодинамика (№№ 231-250) - student2.ru . (3)

Отсюда

e = Iк.з r. (4)

Подстановка соотношения (4) в формулу (2) дает

Термодинамика (№№ 231-250) - student2.ru . (5)

Переписав формулу (1) с учетом выражения (5), получим окончательную формулу

Термодинамика (№№ 231-250) - student2.ru , (6)

а затем, подставив числовые значения, найдем

Термодинамика (№№ 231-250) - student2.ru 9 Вт.

Электромагнетизм

Пример 1. Два параллельных бесконечно длинных провода D и С, по которым текут в одном направлении электрические токи силой I = 60 А, расположены на расстоянии d = 10 см друг от друга.

Термодинамика (№№ 231-250) - student2.ru

Определить индукцию Термодинамика (№№ 231-250) - student2.ru магнитного поля, создаваемого проводниками с током в точке А (рис. 9), отстоящей от оси одного проводника на r1 = 5 см, а от другого - на r2 = 12 см.

Решение. Для нахождения магнитной индукции Термодинамика (№№ 231-250) - student2.ru в точке А воспользуемся принципом суперпозиции магнитных полей. Для этого выделим направление магнитных индукций Термодинамика (№№ 231-250) - student2.ru и Термодинамика (№№ 231-250) - student2.ru полей, создаваемых каждым проводником в отдельности, и сложим их геометрически: Термодинамика (№№ 231-250) - student2.ru = Термодинамика (№№ 231-250) - student2.ru + Термодинамика (№№ 231-250) - student2.ru (см. рис. 9).

Модуль вектора Термодинамика (№№ 231-250) - student2.ru может быть найден по теореме косинусов

Термодинамика (№№ 231-250) - student2.ru , (1)

Термодинамика (№№ 231-250) - student2.ru где a - угол между векторами Термодинамика (№№ 231-250) - student2.ru Термодинамика (№№ 231-250) - student2.ru и Термодинамика (№№ 231-250) - student2.ru .

Магнитные индукции В1 и B2 выражаются соответственно через силу тока I и расстояния r1 и r2 от проводов до точки А:

Термодинамика (№№ 231-250) - student2.ru Термодинамика (№№ 231-250) - student2.ru

Подставляя выражения В1 и B2 в формулу (1) и вынося выражение Термодинамика (№№ 231-250) - student2.ru за знак корня, получаем

Термодинамика (№№ 231-250) - student2.ru . (2)

Вычислим cosa по теореме косинусов, учитывая, что Ð a = Ð DАС (как углы с соответственно перпен-дикулярными сторонами):

Термодинамика (№№ 231-250) - student2.ru ,

где d - расстояние между проводами. Отсюда

Термодинамика (№№ 231-250) - student2.ru

Подставим в формулу (2) числовые значения физических величин и произведем вычисления:

Термодинамика (№№ 231-250) - student2.ru = 309×10-6 Тл =

= 309 мкТл.

Пример 2. Плоский квадратный контур со стороной а = 10 см, по которому течет ток силой I = 100 А, свободно установился в однородном магнитном поле (B = 1 Тл). Определить работу A, совершаемую внеш-ними силами при повороте контура относительно оси, проходящей через середину его противоположных сто-рон, на угол j=90°.

Термодинамика (№№ 231-250) - student2.ru

Решение. Работа внешних сил по перемещению контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока через контур (рис. 10):

A = -IDФ = I(Ф12),

где Ф1 - магнитный поток, пронизывающий контур до перемещения;

Ф2 - магнитный поток, пронизывающий контур после перемещения.

Еслиj=90°, то Ф1 = B×S, а Ф2 = 0. Следовательно,

А = I×B×S = I×B×а2 = 100×1×(0,1)2 =1 Дж.

Примечание. Задача может быть решена другим способом, с использованием определения работы при вращательном движении:

А = МDj.

Предлагаем эти вычисления проделать самостоятельно и убедиться, что описанный выше способ решения задачи с использованием понятия магнитного потока более рационален.

Пример 3. В колебательном контуре, состоящем из индуктивности и емкости, максимальный ток в катушке равен Im = 1 А, а максимальное напряжение на конденсаторе равно Um = 1 кВ. С момента, когданапряжение равно нулю, до момента, когда энергия в катушке становится равной энергии в конденсаторе, проходит t = 1,56 мкс. Считая омическое сопротивление пренебрежимо малым, вычислить период колебаний контура и его энергию.

Решение. По условию задачи энергия магнитного поля в заданный момент времени равна энергии электрического поля в конденсаторе. Сумма этих энергий определяет полную энергию поля контура:

Термодинамика (№№ 231-250) - student2.ru Термодинамика (№№ 231-250) - student2.ru (1)

где L - индуктивность контура;

I - ток в контуре;

С - емкость контура;

U - напряжение на пластинах.

Полная энергия контура, выраженная через максимальное напряжение, равна

Термодинамика (№№ 231-250) - student2.ru . (2)

Из формул (1) и (2) определяем, что

Термодинамика (№№ 231-250) - student2.ru . (3)

Используя уравнение гармонического колебания, в котором отсчет времени ведется от момента, когда напряжение равно нулю, имеем

Термодинамика (№№ 231-250) - student2.ru ,

где Um - амплитуда напряжения (максимальное напряжение);

T - период колебаний;

t - время колебаний.

С учетом выражения (3) получаем

Термодинамика (№№ 231-250) - student2.ru ; Термодинамика (№№ 231-250) - student2.ru .

Подставив числовые значения, находим Т:

Термодинамика (№№ 231-250) - student2.ru ,

откуда

Термодинамика (№№ 231-250) - student2.ru .

Таким образом, период колебаний контура равен

Т = 8×1,57×10-6 = 12,6×10-6 с.

Вычислим теперь полную (максимальную) энергию контура. Она равна максимальной электрической энергии конденсатора (энергия магнитного поля при этом равна нулю) или максимальной энергии магнитного поля (при нулевой энергии электрического поля):

Термодинамика (№№ 231-250) - student2.ru , Термодинамика (№№ 231-250) - student2.ru , (4)

где Im - максимальный ток в катушке.

Используя формулу Томсона Термодинамика (№№ 231-250) - student2.ru получаем

Термодинамика (№№ 231-250) - student2.ru . (5)

Произведение правых частей равенств (4) равно квадрату полной энергии контура Термодинамика (№№ 231-250) - student2.ru . Извлечение корня с учетом формулы (5) дает

Термодинамика (№№ 231-250) - student2.ru

Вычисляем полную энергию контура:

Термодинамика (№№ 231-250) - student2.ru 0,001 Дж.

Пример 4. По двум параллельным проводникам, расположенным на расстоянии 20 см друг от друга, текут токи одного направления величиной в 100 А. Длина проводников равна 3 м. Вычислить силу взаимодействия между проводниками, если они находятся в вакууме.

Решение. На проводники с током в магнитном поле действует сила Ампера, которая может быть найдена по формуле

Термодинамика (№№ 231-250) - student2.ru ,

где d - расстояние между проводниками;

l - их длина;

I1 и I2 - токи в проводниках;

m - магнитная проницаемость среды, равная для вакуума m = 1;

mо - магнитная постоянная.

Подставив в формулу известные нам значения, получаем

Термодинамика (№№ 231-250) - student2.ru = 0,03 Н.

Пример 5. Внутри длинного соленоида, имеющего однослойную обмотку из провода диаметром d = 1 мм, находится стальной сердечник. Определить магнитную проницаемость сердечника при силе тока, равной I = 2 А.

Решение. Индукция намагничивающего поля, т.е. поля внутри соленоида без сердечника, вычисляется по формуле

Термодинамика (№№ 231-250) - student2.ru , (1)

где k – число слоев обмотки.

Эта же индукция равна

Термодинамика (№№ 231-250) - student2.ru , (2)

где Н – напряженность магнитного поля.

Из формул (1) и (2) следует, что

Термодинамика (№№ 231-250) - student2.ru . (3)

Если внутрь соленоида поместить сердечник с магнитной проницаемостью Термодинамика (№№ 231-250) - student2.ru , то индукция станет равной

Термодинамика (№№ 231-250) - student2.ru . (4)

Отсюда с учетом соотношения (2) следует, что

Термодинамика (№№ 231-250) - student2.ru . (5)

Подставляя в формулу (3) исходные данные, находим, что H = 2 кА/м, а затем по графику, изображенному на с.113 (см. приложение), для стали находим B = 1,25 Тл. Тогда

Термодинамика (№№ 231-250) - student2.ru .

Пример 6. Электрон, пройдя ускоряющую разность потенциалов, равную U = 400 В, попал в однородное магнитное поле напряженностью H = 1 кА/м.

Определить радиус кривизны траектории и частоту обращения электрона в магнитном поле, если вектор скорости перпендикулярен линиям поля.

Решение. На движущийся в магнитном поле электрон действует сила Лоренца, которая сообщает электрону нормальное ускорение. По второму закону Ньютона Термодинамика (№№ 231-250) - student2.ru , где Термодинамика (№№ 231-250) - student2.ru - нормальное ускорение. Тогда в проекции на направление ускорения с учетом выражений для силы Лоренца и нормального ускорения имеем

Термодинамика (№№ 231-250) - student2.ru Термодинамика (№№ 231-250) - student2.ru ,

где e - заряд электрона;

v - скорость электрона;

B - магнитная индукция;

m - масса электрона;

R - радиус кривизны траектории;

a - угол между векторами Термодинамика (№№ 231-250) - student2.ru и Термодинамика (№№ 231-250) - student2.ru (в нашем случае он равен 90°, следовательно, sin a = 1).

Отсюда найдем R:

Термодинамика (№№ 231-250) - student2.ru . (1)

Если обозначить кинетическую энергию электронакак T, то входящий в равенство (1) импульс электрона mv может быть выражен как Термодинамика (№№ 231-250) - student2.ru . Используя равенство T = eU для определения кинетической энергии электрона, прошедшего ускоряющую разность потенциалов U, получаем

Термодинамика (№№ 231-250) - student2.ru . (2)

Магнитная индукция может быть выражена через напряженность H магнитного поля в вакууме как Термодинамика (№№ 231-250) - student2.ru . Подставив полученные выражения в формулу (1), находим

Термодинамика (№№ 231-250) - student2.ru . (3)

Производим вычисления:

Термодинамика (№№ 231-250) - student2.ru м.

Частота обращения электрона в магнитном поле связана с его скоростью и радиусом соотношением Термодинамика (№№ 231-250) - student2.ru . Подставив в это соотношение выражение (3) с учетом формулы(2), получаем

Термодинамика (№№ 231-250) - student2.ru .

Произведем вычисления:

Термодинамика (№№ 231-250) - student2.ru c-1 .

Пример 7.В однородном магнитном поле с индук-цией B = 0,1 Тл равномерно с частотой n = 10 об/c вращается рамка, содержащая N = 1000 витков, плотно прилегающих друг к другу. Площадь рамки равна S = 150 см2. Определить мгновенное значение ЭДС индукции в момент времени, когда угол поворота рамки равен Термодинамика (№№ 231-250) - student2.ru .

Решение. Мгновенное значение ЭДС индукции определяется уравнением Фарадея - Максвелла

Термодинамика (№№ 231-250) - student2.ru , (1)

где Термодинамика (№№ 231-250) - student2.ru - потокосцепление, связанное с магнитным потоком Ф и числом витков N соотношением

Термодинамика (№№ 231-250) - student2.ru = NФ.(2)

Подставляя выражение (2) в формулу (1), получаем

Термодинамика (№№ 231-250) - student2.ru .

При вращении рамки магнитный поток, пронизывающий ее в момент времени t, определяется соотношением

Термодинамика (№№ 231-250) - student2.ru , (3)

где B - магнитная индукция;

S - площадь рамки;

Термодинамика (№№ 231-250) - student2.ru - циклическая частота.

Подставив в формулу (2) выражение (3) и продиф-ференцировав по времени, найдем мгновенное зна-чение ЭДС индукции:

Термодинамика (№№ 231-250) - student2.ru .

Учитывая, что Термодинамика (№№ 231-250) - student2.ru , а Термодинамика (№№ 231-250) - student2.ru , получаем

Термодинамика (№№ 231-250) - student2.ru .

Произведем вычисления:

Термодинамика (№№ 231-250) - student2.ru B.

Пример 8.Имеется катушка, индуктивность кото-рой равна L = 0,2 Гн, а сопротивление R = 1,64 Ом.

Найти, во сколько раз уменьшится сила тока в катушке через t = 0,05 с после того, как катушка отключена от источника тока и замкнута накоротко.

Термодинамика (№№ 231-250) - student2.ru

Решение. При выключении тока в цепи, содержащей R и L (рис. 11), и ²закорачивании² катушки ток в ней изменяется по закону

Термодинамика (№№ 231-250) - student2.ru ,

где Iо - значение тока до ²закорачивания² катушки.

Через промежуток времени t1 сила тока в катушке будет равна Термодинамика (№№ 231-250) - student2.ru Тогда отношение токов будет следующим:

Термодинамика (№№ 231-250) - student2.ru .

Произведем вычисления:

Термодинамика (№№ 231-250) - student2.ru раза.

Наши рекомендации