Свойства полноценного умения решать арифметические задачи

Рассматривая умение не только как компонент содержания образования, но и как результат обучения, приходим к выводу, что понятие «качество умения» утверждает степень соответствия сформированного в процессе обучения умения тому, каким должно быть умение в зависимости от целей обучения. В соответствии с этим под качеством умения будем понимать обнаруживающуюся в деятельности совокупность его свойств. Полноценным умением будем называть умение, обладающее совокупностью свойств, соответствующих целям обучения [20].

Качество любого умения в содержательных и деятельностных характеристиках отражается в требованиях к нему как ожидаемому результату обучения.

На основе анализа психолого-педагогической литературы и учета того, что у младших школьников лишь закладываются основные понятия, к основным свойствам умения решать арифметические задачи мы отнесли осознанность, самостоятельность, перенос, правильность и прочность [19,20].

Осознанность умения решать арифметические задачи характеризуется актуальным осознанием в процессе решения задачи математических положений, лежащих в основе выбора арифметического действия (осознанность используемых обосновывающих знаний), и выполняемых операций (осознанность используемых операционных знаний). Проявляется осознанность в том, что в процессе решения задачи ученик актуализирует используемые содержательные и операционные знания.

О сформированности умения решать арифметические задачи можно говорить только в том случае, если ученик без вмешательства со стороны, правильно выполняет всю систему операций, составляющих процесс решения задачи. Это есть проявление такого свойства умения как самостоятельность. Показатель самостоятельности - мера помощи со стороны учителя.

Перенос умения решать арифметические задачи характеризуется проявлением умения в новых условиях.

Если ученик правильно выбирает арифметическое действие, то говорят, что умение решать арифметические задачи обладает правильностью. Для оценки правильности умения используется коэффициент правильности, который определяется отношением числа правильно решенных задач к числу всех задач, предлагаемых для решения.

Если ученик сохраняет сформированное умение в течение длительного времени, то сформированное у него умение обладает прочностью.

Прочность умения рассматривается как сохраняемость осознанности, самостоятельности и правильности.

Прочность правильности умения характеризуется отношением коэффициентов правильности, вычисленных в конце формирования умения (К1) и через некоторый промежуток времени после прекращения функционирования (К2):

Кпр.= Свойства полноценного умения решать арифметические задачи - student2.ru .

Правильность обладает высоким уровнем прочности, если указанный коэффициент прочности равен или близок к единице.

Аналогично вычисляются коэффициенты прочности осознанности, самостоятельности умения.

Общие вопросы методики формирования умения решать арифметические задачи

В системе обучения решению арифметических задач необходимо выделить две линии: первая линия - формирование общего умения решать задачи, вторая линия - формирование умения решать задачи каждого вида (типа) на основе общего умения. Под общим умением решать арифметические задачи мы будем понимать овладение системой операций, составляющих процесс решения любой арифметической задачей, а также знаниями о задаче и ее структуре [19, 20].

Работу по формированию общего умения решать задачи целесообразно начать при введении первых арифметических задач, т.е. задач на нахождение суммы и остатка.

В методике обучения решению задач каждого вида (типа) следует предусмотреть следующие ступени:

а) подготовка к введению задач нового вида (типа);

б) ознакомление с решением задач нового вида (типа);

в) формирование умения решать арифметические задачи данного вида (типа) [1].

Рассмотрим основные задачи и методику работы на каждой ступени.

На подготовительной ступени к введению простых арифметических задач ученик должен усвоить теоретическую основу выбора арифметического действия, составных арифметических задач - актуализировать систему теоретических знаний, которые составляют теоретическую основу выбора арифметического действия простых, входящих в неё задач. Необходимо раскрыть новые связи и отношения, которые даются в задаче косвенно (например, два поезда вышли одновременно и встретились через три часа; столько же; по одинаковой цене и т.д.); ознакомить с новыми величинами, которые войдут в содержание задачи; с новыми объектами (комбайн, эскалатор и др.), используя предметные картинки, слайды и т.д. Ученик на этой ступени должен усвоить содержание операций, составляющих процесс решения задач нового вида (типа).

На ступени ознакомления с задачей нового вида (типа) ученик должен усвоить всю систему операций (их последовательность и содержание), составляющих процесс ее решения. В связи с этим на ступени ознакомления учителем используется различная методическая оснастка.

При ознакомлении с содержанием задачи учащиеся после ее прочтения и представления конкретной ситуации, описанной в задаче, выделяют данные и искомое. Существуют дидактические средства, позволяющие ребенку «увидеть» данные и искомое: выделение объектов и чисел, выражающих либо численность множества объектов, либо являющихся значением величин; инсценирование задачи, способствующее осознанию условия и требования задачи (Приглашаются два ученика, одному дается роль условия задачи, второму - вопроса задачи. После прочтения задачи учителем, первый ученик делает шаг вперед и говорит: «Условие задачи: ... (повторяет условие задачи)», второй ученик поступает аналогично с вопросом задачи.). Важно научить ребенка правильно повторять задачу, а затем читать: делать логическое ударение на числах и объектах, численность которых обозначают данные числа, на вопросе задачи.

При поиске решения простой арифметической задачи ученик выполняет операции 3-5; составной арифметической задачи - 3. Это центральный момент по решению задачи. Главная цель учителя так организовать работу детей, использовать такие методические приемы и средства, чтобы научить ученика самостоятельному нахождению решения задачи.

Наши рекомендации