Типы несовместимости: соподчинение, противоположность, противоречие
Все S есть М
Все S есть P
Билет №5
1. Отношение между понятиями по объему. Предметы мира находятся друг с другом во взаимосвязи и взаимообусловленности. Поэтому и понятия, отражающие эти предметы, также находятся в определенных отношениях. Далекие друг от друга по своему содержанию понятия, не имеющие общих признаков, называются несравнимыми (например, “поэма” и “колодец”; “невоспитанность” и “радуга”), остальные понятия называются сравнимыми.
Сравнимые понятия делятся по объему на совместимые (объемы этих понятий совпадают полностью или частично) и несовместимые (их объемы не имеют общих элементов).
Типы совместимости:
равнозначность (тождество), перекрещивание,
подчинение (отношение рода и вида)
Отношения между понятиями изображают с помощью круговых схем (кругов Эйлера)', где каждый круг обозначает объем понятия. Кругом изображается и единичное понятие.
Равнозначными, или тождественными, называются понятия, которые, различаясь содержанием, имеют равные объемы. В них мыслится или одноэлементный класс, или один и тот же класс предметов, состоящий более чем из одного элемента. Примеры равнозначных понятий: 1) “река Нил” и “самая длинная река в мире”; 2) “автор романа “Красное и черное”, “автор романа “Пармская обитель”; 3) “равносторонний прямоугольник”: “ квадрат”; “равноугольный ромб”. Объемы тождественных понятий изображаются кругами, полностью совпадающими.
Понятия, объемы которых совпадают частично, т. е. содержат общие элементы, находятся в отношении перекрещивания. Примерами их являются следующие пары: “горожанин” и “садовод”; “студент” и “нумизмат”; “спортсмен” и “учащийся педагогического колледжа”. Они изображаются пересекающимися кругами (рис. 3). В заштрихованной части двух кругов мыслятся учащиеся педагогического колледжа, являющиеся спортсменами или (что одно и то же) спортсмены, являющиеся учащимися педагогического колледжа, в левой части круга А мыслятся учащиеся педагогического колледжа, не являющиеся спортсменами. В правой части круга В мыслятся спортсмены, которые не являются учащимися педагогического колледжа.
Отношение подчинения (субординации) характеризуется тем, что объем одного понятия целиком включается (входит) в объем другого понятия, но не исчерпывает его. Это отношение вида и рода; А - подчиняющее понятие (“цветок”), В - подчиненное понятие (“чайная роза”) (рис. 3).
Типы несовместимости: соподчинение, противоположность, противоречие
Соподчинение (координация) - это отношение между объемами двух или нескольких понятий, исключающих, друг друга, но принадлежащих некоторому более общему (родовому) понятию (например, “пианино”, “скрипка”, “виолончель” принадлежат объему понятия “музыкальный инструмент”). Они изображаются отдельными неперекрещивающимися кругами внутри более обширного круга (рис. 3). Это виды одного и того же рода.
В отношении противоположности (контрарности) находятся объемы таких двух понятий, которые являются видами одного и того же рода, и притом одно из них содержит какие-то признаки, а другое эти признаки не только отрицает, но и заменяет их другими, исключающими (т. е. противоположными признаками). Слова, выражающие противоположные понятия, являются антонимами. Антонимы широко используются в обучении. Примеры противоположных понятий: “великан” - “карлик”; “белые туфли” - “черные туфли”. Объемы последних двух понятий
2. Фигуры и модусы категорического силлогизма. В посылках простого категорического силлогизма средний термин может занимать место субъекта или место предиката. В зависимости от этого различают четыре разновидности силлогизма, которые называются фигурами.
1) M P 2) P M
S M S M
S P S P
3) M P 4) P M
M S M S
S P S P. Эти фигуры исчерпывают все возможные комбинации терминов. Посылками силлогизма могут быть суждения, различные по качеству и количеству. Разновидности силлогизма, различающиеся количеством и качеством посылок, называются модусами простого категорического силлогизма.
Модусов, согласующихся с общими правилами силлогизма, – 19. Их называют правильными. Их принято записывать вместе с заключением:
1-я фигура: ААА, ЕАЕ, АII, EIO
2-я фигура: EAE, AEE, EIO, AOO
3-я фигура: AAI, IAI, AII, EAO, OAO, EIO.
4-я фигура: AAI, AEE, IAI, EAO, EIO
Необходимость знания модусов обусловлена тем, что не всегда заключение вытекает из посылок и не всегда мы можем убедиться в правильности нашего вывода по смыслу самого умозаключения.
Правила фигур силлогизма
Как видно из анализа модусов 1-й фигуры, они имеют следующие два правила:
1. Бόльшая посылка – общее суждение
2. Меньшая посылка – утвердительное суждение.
Модусы 2-й фигуры указывают на следующие правила:
3. Бόльшая посылка – общее суждение
4. Одна из посылок – отрицательное суждение.
3-я фигура имеет такие правила:
5. Меньшая посылка – утвердительное суждение
6. Заключение – частное суждение.
4-я фигура также имеет свои правила и модусы. Однако выведение заключения из посылок по этой фигуре не характерно для естественного процесса рассуждения.
Билет №6
1. Закон обратного отношения между объемом и содержанием понятия. Всякое понятие имеет содержание и объем. Содержанием понятия называется совокупность существенных признаков предмета или класса однородных предметов, отраженных в этом понятии. Содержанием понятия “ромб” является совокупность двух существенных признаков: “быть параллелограммом” и “иметь равные стороны”.
Объемом понятия называют класс предметов, который мыслится в понятии. Объективно, т.е. вне сознания человека, существуют различные предметы, например животные. Под объемом понятия “животное” мыслится класс всех животных, которые существуют сейчас, существовали ранее и будут существовать в будущем. Класс состоит из отдельных объектов, которые называются его элементами. В зависимости от их числа классы делятся на пустые, конечные и бесконечные. Например, класс фей - пустой, класс планет Солнечной системы - конечный, а класс натуральных чисел - бесконечный. Класс А называется подклассом класса Д, если каждый элемент А является элементом В. Такое отношение между А и В называется отношением включения касса А в класс В и записывается так: А э В. Читается: класс А входит в класс В. Например, класс “ель” входит в класс “дерево”.
Отношение принадлежности элемента а классу А, записывается так: а О А. Читается: элемент а принадлежит классу А (например, а - “река Енисей”, А - “река”).
Классы А и В являются тождественными (совпадающими), если А V В и В V А, что записывается как А є В.
Объем одного понятия может входить в объем другого понятия и составлять при этом лишь его часть. Например, объем понятия “ моторная лодка” целиком входит в объем другого, более широкого по объему понятия “лодка” (составляет часть объема понятия “ лодка”). При этом содержание первого понятия оказывается шире, богаче (содержит больше признаков), чем содержание второго. На основе обобщения такого рода примеров можно сформулировать следующий закон: чем шире объем понятия, тол уже его содержание, и наоборот. Этот закон называется законом обратного отягощения между объемами и содержаниями понятий. Он указывает на то, что чем меньше информация о предметах, заключенная в понятии, тем шире идее предметов и неопределеннее его сочетав (например, “растение”), и наоборот, чем больше информации в попятам (например, “съедобное растение” ила “съедобное маковое растение”), тем уже и определеннее круг предметов. В этом законе речь идет о понятиях, находящихся в родовидовых отношениях.
2. Общие правила силлогизма: правила терминов и правила посылок. Правила терминов