К выполнению контрольной работы
Для выполнения задач № 1 и № 2 изучите материал в учебном пособии Л.С. Чебыкина «Математические методы в психологии» (Раздел 2) или в пособии Гмурман В.Е. «Руководство к решению задач по теории вероятностей и математической статистике» (главы 10, 11, 13).
Задача 3.
Проведите сравнительный анализ результатов педагогического эксперимента в контрольных и экспериментальных группах, используя критерий однородности Пирсона.
, где и .
Уровень значимости положите
Значение варианты | 2 | 3 | 4 | 5 |
Частота появления в экспериментальной группе | 27 | 25 | 28 | 9 |
Частота появления в контрольной группе | 9 | 5 | 18 | 10 |
Решение.
Проведем сравнительный анализ результатов педагогического эксперимента в контрольных и экспериментальных группах, используя критерий однородности Пирсона:
,
где 2, 3, 4, 5 - вариационный ряд (оценки, выставляемые по результатам проведения контрольных работ); - частота появления i-ой варианты в экспериментальной группе; - частота появления i-ой варианты в контрольной группе; - объем выборки в экспериментальной группе; - объем выборки в контрольной группе; m=4 - количество различных значений варианты (количество интервалов группировки); k=m-1=3 - количество степеней свободы.
Найдем и .
=27+25+28+9=89, =9+5+18+10=42.
Теперь вычислим .
= =8,6.
По таблице критических точек распределения , приведенной в приложении 3, для числа степеней свободы k=3 и уровня значимости a=0,05 находим значение =7,81.
Так как > (8,6>7,81), то согласно правилу принятия решения, делаем вывод, что существуют достоверные различия между результатами проведения контрольных работ в экспериментальной и контрольной группах на уровне надежности g=1-a=1-0,05=0,95.На этом решение задачи 3 закончено.
Задача 4.
Исследуется зависимость коэффициента усвоения знаний, выраженного в процентах ( %) от уровня посещаемости занятий ( %) в группе из четырнадцати учащихся ( - порядковый номер учащегося). Статистические данные приведены в таблице.
Требуется:
1) Найти оценки параметров линейной регрессии на . Построить диаграмму рассеяния и нанести прямую регрессии на диаграмму рассеяния.
2) На уровне значимости проверить гипотезу о согласии линейной регрессии с результатами наблюдений.
3) С надежностью найти доверительные интервалы для параметров линейной регрессии.
i | ||||||||||||||
Решение.
Найдем точечные статистические оценки и параметров и линейной регрессии y на x: .
Для уравнения прямой регрессии по исходным статистическим данным найдем оценки и ее параметров методом наименьших квадратов. Применим известные формулы
, где , ;
Вычисления организуем в форме следующей расчетной таблицы:
i | |||||
50,714 | 34,143 | 1836,071 | 2764,286 | 1226,286 |
Таким образом, , , , , .
Далее вычисляем ковариации
;
;
;
и по указанным выше формулам находим
; .
В результате получаем уравнение прямой регрессии .
Проверим согласованность выбранной линейной регрессии с результатами наблюдений. Для этого решим следующую задачу проверки статистической гипотезы.
На заданном уровне значимости выдвигается гипотеза об отсутствии линейной статистической связи. Для проверки выдвинутой гипотезы используется коэффициент детерминации и применяется статистика Фишера F.
В случае парной линейной регрессии коэффициент детерминации равен квадрату выборочного коэффициента корреляции Пирсона, т.е. .
Статистика F выражается формулой и при условии справедливости гипотезы имеет классическое распределение Фишера с и степенями свободы.
В соответствии с приведенными формулами вычисляем коэффициент детерминации и наблюдаемое значение статистики Фишера:
, .
Критическое значение статистики Фишера находим по таблице квантилей распределения Фишера, исходя из равенства , где p=1-a (порядок квантили), и . В данном случае .
Сравниваем между собой наблюдаемое и критическое значения статистики Фишера. Так как , то выдвинутая гипотеза решительно отвергается, что свидетельствует о согласии линейной регрессивной связи с результатами наблюдений.
Так как линейная регрессия согласуется со статистическими данными, найдем (с надежностью g=0,95) доверительные интервалы для параметров и линейной регрессии. Для нахождения доверительных интервалов применим известные формулы:
, где , - квантиль распределения Стьюдента порядка с k=n-2 степенями свободы, ; , где .
В данном случае получаем следующие значения:
= ,
;
;
= .
Применив приведенные выше формулы для доверительных интервалов, окончательно получим
,
.
Решение задачи 4 закончено.
С примерами решения задач № 5 и № 6 можно ознакомиться в пособии Л.С. Чебыкина «Математические методы в психологии» (п. 2.2.5, 2.2.7).
Литература
Основная литература
1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике [Текст] / В.Е. Гмурман. – М.: ОНИКС. Мир и Образование, 2007. – 405с.
2. Ермолаев О.Ю. Математическая статистика для психологов [Текст]: Учебник для вузов / О.Ю. Ермолаев. – М.: МПСУ, 2011. – 336 с.
3. Лупандин В.И. Математические методы в психологии [Текст] / В.И. Лупандин. – Екатеринбург: Изд-во Уральского ун-та, 2009. – 119 с.
4. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных [Текст] / А.Д. Наследов. – СПб.: «Речь», 2012. – 392 с.
5. Суходольский Г.В. Математические методы в психологии [Текст] / Г.В. Суходольский. – Харьков: Изд-во «Гуманитарный центр», 2008. – 284 с.
Дополнительная литература
1. Гласс Дж., Стенли Дж. Статистические методы в педагогике и психологии [Текст] / Дж. Гласс, Дж. Стенли. – М.: Прогресс, 1976. – 496 с.
2. Сидоренко Е.В. Методы математической обработки в психологии [Текст] / Е.В. Сидоренко. – СПб.: «Речь», 2007. – 350 с.
3. Суходольский Г.В. Математическая психология [Текст] / Г.В. Суходольский. – Харьков: Изд-во «Гуманитарный центр», 2006. – 360 с.
4. Чебыкин Л.С. Математические методы в психологии [Текст]: Учебное пособие / Л.С. Чебыкин. – Екатеринбург: Изд-во Рос.гос.проф.-пед. ун-та, 2002. – 83 с.
ПРИЛОЖЕНИЯ
ПРИЛОЖЕНИЕ 1
Таблица значений функции Лапласа
0,00 | 0,0000 | 0,32 | 0,1255 | 0,64 | 0,2389 | 0,96 | 0,3315 |
0,01 | 0,0040 | 0,33 | 0,1293 | 0,65 | 0,2422 | 0,97 | 0,3340 |
0,02 | 0,0080 | 0,34 | 0,1331 | 0,66 | 0,2454 | 0,98 | 0,3365 |
0,03 | 0,0120 | 0,35 | 0,1368 | 0,67 | 0,2486 | 0,99 | 0,3389 |
0,04 | 0,0160 | 0,36 | 0,1406 | 0,68 | 0,2517 | 1,00 | 0,3413 |
0,05 | 0,0199 | 0,37 | 0,1443 | 0,69 | 0,2549 | 1,01 | 0,3438 |
0,06 | 0,0239 | 0,38 | 0,1480 | 0,70 | 0,2580 | 1,02 | 0,3461 |
0,07 | 0,0279 | 0,39 | 0,1517 | 0,71 | 0,2611 | 1,03 | 0,3485 |
0,08 | 0,0319 | 0,40 | 0,1554 | 0,72 | 0,2642 | 1,04 | 0,3508 |
0,09 | 0,0359 | 0,41 | 0,1591 | 0,73 | 0,2673 | 1,05 | 0,3531 |
0,10 | 0,0398 | 0,42 | 0,1628 | 0,74 | 0,2703 | 1,06 | 0,3554 |
0,11 | 0,0438 | 0,43 | 0,1664 | 0,75 | 0,2734 | 1,07 | 0,3577 |
0,12 | 0,0478 | 0,44 | 0,1700 | 0,76 | 0,2764 | 1,08 | 0,3599 |
0,13 | 0,0517 | 0,45 | 0,1736 | 0,77 | 0,2794 | 1,09 | 0,3621 |
0,14 | 0,0557 | 0,46 | 0,1772 | 0,78 | 0,2823 | 1,10 | 0,3643 |
0,15 | 0,0596 | 0,47 | 0,1808 | 0,79 | 0,2852 | 1,11 | 0,3665 |
0,16 | 0,0636 | 0,48 | 0,1844 | 0,80 | 0,2881 | 1,12 | 0,3686 |
0,17 | 0,0675 | 0,49 | 0,1879 | 0,81 | 0,2910 | 1,13 | 0,3708 |
0,18 | 0,0714 | 0,50 | 0,1915 | 0,82 | 0,2939 | 1,14 | 0,3729 |
0,19 | 0,0753 | 0,51 | 0,1950 | 0,83 | 0,2967 | 1,15 | 0,3749 |
0,20 | 0,0793 | 0,52 | 0,1985 | 0,84 | 0,2995 | 1,16 | 0,3770 |
0,21 | 0,0832 | 0,53 | 0,2019 | 0,85 | 0,3023 | 1,17 | 0,3790 |
0,22 | 0,0871 | 0,54 | 0,2054 | 0,86 | 0,3051 | 1,18 | 0,3810 |
0,23 | 0,0910 | 0,55 | 0,2088 | 0,87 | 0,3078 | 1,19 | 0,3830 |
0,24 | 0,0948 | 0,56 | 0,2123 | 0,88 | 0,3106 | 1,20 | 0,3849 |
0,25 | 0,0987 | 0,57 | 0,2157 | 0,89 | 0,3133 | 1,21 | 0,3869 |
0,26 | 0,1026 | 0,58 | 0,2190 | 0,90 | 0,3159 | 1,22 | 0,3883 |
0,27 | 0,1064 | 0,59 | 0,2224 | 0,91 | 0,3186 | 1,23 | 0,3907 |
0,28 | 0,1103 | 0,60 | 0,2257 | 0,92 | 0,3212 | 1,24 | 0,3925 |
0,29 | 0,1141 | 0,61 | 0,2291 | 0,93 | 0,3238 | 1,25 | 0,3944 |
0,30 | 0,1179 | 0,62 | 0,2324 | 0,94 | 0,3264 | ||
0,31 | 0,1217 | 0,63 | 0,2357 | 0,95 | 0,3289 |
Окончание приложения 1
1,26 | 0,3962 | 1,59 | 0,4441 | 1,92 | 0,4726 | 2,50 | 0,4938 |
1,27 | 0,3980 | 1,60 | 0,4452 | 1,93 | 0,4732 | 2,52 | 0,4941 |
1,28 | 0,3997 | 1,61 | 0,4463 | 1,94 | 0,4738 | 2,54 | 0,4945 |
1,29 | 0,4015 | 1,62 | 0,4474 | 1,95 | 0,4744 | 2,56 | 0,4948 |
1,30 | 0,4032 | 1,63 | 0,4484 | 1,96 | 0,4750 | 2,58 | 0,4951 |
1,31 | 0,4049 | 1,64 | 0,4495 | 1,97 | 0,4756 | 2,60 | 0,4953 |
1,32 | 0,4066 | 1,65 | 0,4505 | 1,98 | 0,4761 | 2,62 | 0,4956 |
1,33 | 0,4082 | 1,66 | 0,4515 | 1,99 | 0,4767 | 2,64 | 0,4959 |
1,34 | 0,4099 | 1,67 | 0,4525 | 2,00 | 0,4772 | 2,66 | 0,4961 |
1,35 | 0,4115 | 1,68 | 0,4535 | 2,02 | 0,4783 | 2,68 | 0,4963 |
1,36 | 0,4131 | 1,69 | 0,4545 | 2,04 | 0,4793 | 2,70 | 0,4965 |
1,37 | 0,4147 | 1,70 | 0,4554 | 2,06 | 0,4803 | 2,72 | 0,4967 |
1,38 | 0,4162 | 1,71 | 0,4564 | 2,08 | 0,4812 | 2,74 | 0,4969 |
1,39 | 0,4177 | 1,72 | 0,4573 | 2,10 | 0,4821 | 2,76 | 0,4971 |
1,40 | 0,4192 | 1,73 | 0,4582 | 2,12 | 0,4830 | 2,78 | 0,4973 |
1,41 | 0,4207 | 1,74 | 0,4591 | 2,14 | 0,4838 | 2,80 | 0,4974 |
1,42 | 0,4222 | 1,75 | 0,4599 | 2,16 | 0,4846 | 2,82 | 0,4976 |
1,43 | 0,4236 | 1,76 | 0,4608 | 2,18 | 0,4854 | 2,84 | 0,4977 |
1,44 | 0,4251 | 1,77 | 0,4616 | 2,20 | 0,4861 | 2,86 | 0,4979 |
1,45 | 0,4265 | 1,78 | 0,4625 | 2,22 | 0,4868 | 2,88 | 0,4980 |
1,46 | 0,4279 | 1,79 | 0,4633 | 2,24 | 0,4875 | 2,90 | 0,4981 |
1,47 | 0,4292 | 1,80 | 0,4641 | 2,26 | 0,4881 | 2,92 | 0,4982 |
1,48 | 0,4306 | 1,81 | 0,4649 | 2,28 | 0,4887 | 2,94 | 0,4984 |
1,49 | 0,4319 | 1,82 | 0,4656 | 2,30 | 0,4893 | 2,96 | 0,4985 |
1,50 | 0,4332 | 1,83 | 0,4664 | 2,32 | 0,4898 | 2,98 | 0,4986 |
1,51 | 0,4345 | 1,84 | 0,4671 | 2,34 | 0,4904 | 3,00 | 0,49865 |
1,52 | 0,4357 | 1,85 | 0,4678 | 2,36 | 0,4909 | 3,20 | 0,49931 |
1,53 | 0,4370 | 1,86 | 0,4686 | 2,38 | 0,4913 | 3,40 | 0,49966 |
1,54 | 0,4382 | 1,87 | 0,4693 | 2,40 | 0,4918 | 3,60 | 0,49841 |
1,55 | 0,4394 | 1,88 | 0,4699 | 2,42 | 0,4922 | 3,80 | 0,499928 |
1,56 | 0,4406 | 1,89 | 0,4706 | 2,44 | 0,4927 | 4,00 | 0,499968 |
1,57 | 0,4418 | 1,90 | 0,4713 | 2,46 | 0,4931 | 4,50 | 0,499997 |
1,58 | 0,4429 | 1,91 | 0,4719 | 2,48 | 0,4934 | 5,00 | 0,499997 |
ПРИЛОЖЕНИЕ 2
Таблица значений функции
0,0 | 0,399 | |||||||||
0,1 | ||||||||||
0,2 | ||||||||||
0,3 | ||||||||||
0,4 | ||||||||||
0,5 | ||||||||||
0,6 | ||||||||||
0,7 | ||||||||||
0,8 | ||||||||||
0,9 | ||||||||||
1,0 | 0,242 | |||||||||
1,1 | ||||||||||
1,2 | ||||||||||
1,3 | ||||||||||
1,4 | ||||||||||
1,5 | ||||||||||
1,6 | ||||||||||
1,7 | ||||||||||
1,8 | ||||||||||
1,9 | ||||||||||
2,0 | 0,054 | |||||||||
2,1 | ||||||||||
2,2 | ||||||||||
2,3 | ||||||||||
2,4 | ||||||||||
2,5 | ||||||||||
2,6 | ||||||||||
2,7 | ||||||||||
2,8 | ||||||||||
2,9 | ||||||||||
3,0 | 0,004 | |||||||||
3,1 | ||||||||||
3,2 | ||||||||||
3,3 | ||||||||||
3,4 | ||||||||||
3,5 | ||||||||||
3,6 | ||||||||||
3,7 | ||||||||||
3,8 | ||||||||||
3,9 |
ПРИЛОЖЕНИЕ 3
Критические точки распределения
Число степеней свободы | Уровень значимости | |||||
0,01 | 0,025 | 0,05 | 0,95 | 0,975 | 0,99 | |
6,6 | 5,0 | 3,8 | 0,0039 | 0,00098 | 0,00016 | |
9,2 | 7,4 | 6,0 | 0,103 | 0,051 | 0,020 | |
11,3 | 9,4 | 7,8 | 0,352 | 0,216 | 0,115 | |
13,3 | 11,1 | 9,5 | 0,711 | 0,484 | 0,297 | |
15,1 | 12,8 | 11,1 | 1,15 | 0,831 | 0,554 | |
16,8 | 14,4 | 12,6 | 1,64 | 1,24 | 0,872 | |
18,5 | 16,0 | 14,1 | 2,17 | 1,69 | 1,24 | |
20,1 | 17,5 | 15,5 | 2,73 | 2,18 | 1,65 | |
21,7 | 19,0 | 16,9 | 3,33 | 2,70 | 2,09 | |
23,2 | 20,5 | 18,3 | 3,94 | 3,25 | 2,56 | |
24,7 | 21,9 | 19,7 | 4,57 | 3,82 | 3,05 | |
26,2 | 23,3 | 21,0 | 5,23 | 4,40 | 3,57 | |
27,7 | 24,7 | 22,4 | 5,89 | 5,01 | 4,11 | |
29,1 | 26,1 | 23,7 | 6,57 | 5,63 | 4,66 | |
30,6 | 27,5 | 25,0 | 7,26 | 6,26 | 5,23 | |
32,0 | 28,8 | 26,3 | 7,96 | 6,91 | 5,81 | |
33,4 | 30,2 | 27,6 | 8,67 | 7,56 | 6,41 | |
34,8 | 31,5 | 28,9 | 9,39 | 8,23 | 7,01 | |
36,2 | 32,9 | 30,1 | 10,1 | 8,91 | 7,63 | |
37,6 | 34,2 | 31,4 | 10,9 | 9,59 | 8,26 | |
38,9 | 35,5 | 32,7 | 11,6 | 10,3 | 8,90 | |
40,3 | 36,8 | 33,9 | 12,3 | 11,0 | 9,54 | |
41,6 | 38,1 | 35,2 | 13,1 | 11,7 | 10,2 | |
43,0 | 39,4 | 36,4 | 13,8 | 12,4 | 10,9 | |
44,3 | 40,6 | 37,7 | 14,6 | 13,1 | 11,5 | |
45,6 | 41,9 | 38,9 | 15,4 | 13,8 | 12,2 | |
47,0 | 43,2 | 40,1 | 16,2 | 14,6 | 12,9 | |
48,3 | 44,5 | 41,3 | 16,9 | 15,3 | 13,6 | |
49,6 | 45,7 | 42,6 | 17,7 | 16,0 | 14,3 | |
50,9 | 47,0 | 43,8 | 18,5 | 16,8 | 15,0 |
ПРИЛОЖЕНИЕ 4
Таблица значений
n | 0,95 | 0,99 | 0,999 | n | 0,95 | 0,99 | 0,099 |
2,78 | 4,60 | 8,61 | 2,093 | 2,861 | 3,883 | ||
2,57 | 4,03 | 6,86 | 2,064 | 2,797 | 3,745 | ||
2,45 | 3,71 | 5,96 | 2,645 | 2,756 | 3,659 | ||
2,37 | 3,50 | 5,41 | 2,032 | 2,720 | 3,600 | ||
2,31 | 3,36 | 5,04 | 2,023 | 2,708 | 3,558 | ||
2,26 | 3,25 | 4,78 | 2,016 | 2.692 | 3,527 | ||
2,23 | 3,17 | 4,59 | 2,009 | 2,679 | 3,502 | ||
2,20 | 3,11 | 4,44 | 2,001 | 2,662 | 3,464 | ||
2,18 | 3,06 | 4.32 | 1,996 | 2,649 | 3,439 | ||
2,16 | 3,01 | 4,22 | 1,991 | 2,640 | 3,418 | ||
2,15 | 2,98 | 4,14 | 1,987 | 2,633 | 3,403 | ||
2,13 | 2,95 | 4,07 | 1,984 | 2,627 | 3,392 | ||
2,12 | 2,92 | 4,02 | 1,980 | 2,617 | 3,374 | ||
2,11 | 2,90 | 3,97 | 1,960 | 2,576 | 3,291 | ||
2,10 | 2,88 | 3,92 |
ПРИЛОЖЕНИЕ 5
Таблица значений
n | 0,95 | 0,99 | 0,999 | n | 0,95 | 0,99 | 0,999 |
1,37 | 2,67 | 5,64 | 0,37 | 0,58 | 0,88 | ||
1,09 | 2,01 | 3,88 | 0,32 | 0,49 | 0,73 | ||
0,92 | 1,62 | 2,98 | 0,28 | 0,43 | 0,63 | ||
0,80 | 1,38 | 2,42 | 0,26 | 0,38 | 0,56 | ||
0,71 | 1,20 | 2,06 | 0,24 | 0,35 | 0,50 | ||
0,65 | 1,08 | 1,80 | 0,22 | 0,32 | 0,46 | ||
0,59 | 0,98 | 1,60 | 0,21 | 0,30 | 0,43 | ||
0,55 | 0,90 | 1,45 | 0,188 | 0,269 | 0,38 | ||
0,52 | 0,83 | 1,33 | 0,174 | 0,245 | 0,34 | ||
0,48 | 0,78 | 1,23 | 0,161 | 0,226 | 0,31 | ||
0,46 | 0,73 | 1,15 | 0,151 | 0,211 | 0,29 | ||
0,44 | 0,70 | 1,07 | 0,143 | 0,198 | 0,27 | ||
0,42 | 0,66 | 1,01 | 0,115 | 0,160 | 0,211 | ||
0,40 | 0,63 | 0,96 | 0,099 | 0,136 | 0,185 | ||
0,39 | 0,60 | 0,92 | 0,098 | 0,120 | 0,162 |
ПРИЛОЖЕНИЕ 6
Критические точки распределения Фишера-Снедекора
(к1 – число степеней свободы большей дисперсии, к2 – число степеней свободы меньшей дисперсии.) Уровень значимости
к1 к2 | ||||||||||||
98,49 | 99,01 | 90,17 | 99,25 | 99,33 | 99,30 | 99,34 | 99,36 | 99,36 | 99,40 | 99,41 | 99,42 | |
34,12 | 30,81 | 29,46 | 28,71 | 28,24 | 27,91 | 27,67 | 27,49 | 27,34 | 27,23 | 27,13 | 27,05 | |
21,20 | 18,00 | 16,69 | 15,98 | 15,52 | 15,21 | 14,98 | 14,80 | 14,66 | 14,54 | 14,45 | 14,37 | |
16,26 | 13,27 | 12,06 | 11,39 | 10,97 | 10,67 | 10,45 | 10,27 | 10,15 | 10,05 | 9,96 | 9,89 | |
13,74 | 10.92 | 9,78 | 9,15 | 8,75 | 8,47 | 8,26 | 8,10 | 7,98 | 7,87 | 7,79 | 7,72 | |
12,25 | 9,55 | 8,45 | 7,85 | 7,46 | 7,19 | 7,00 | 6,84 | 6,71 | 6,62 | 6,54 | 6,47 | |
11,26 | 8,65 | 7,59 | 7,01 | 6,63 | 6,37 | 6,19 | 6,03 | 5,91 | 5,82 | 5,74 | 5,67 | |
10,56 | 8,02 | 6,99 | 6,42 | 6,06 | 5,80 | 5,62 | 5,47 | 5,35 | 5,26 | 5,18 | 5,11 | |
10,04 | 7,56 | 6,55 | 5,99 | 5,64 | 5,39 | 5,21 | 5,06 | 4,95 | 4,85 | 4,78 | 4,71 | |
9,86 | 7,20 | 6,22 | 5,67 | 5,32 | 5,07 | 4,88 | 4,74 | 4,63 | 4,54 | 4,46 | 4,40 | |
9,33 | 6,93 | 5,95 | 5,41 | 5,06 | 4,82 | 4,65 | 4,50 | 4,39 | 4,30 | 4,22 | 4,16 | |
9,07 | 6,70 | 5,74 | 5,20 | 4,86 | 4,62 | 4,44 | 4,30 | 4,19 | 4,10 | 4,02 | 3,96 | |
8,86 | 6,51 | 5,56 | 5,03 | 4,69 | 4,46 | 4,28 | 4,14 | 4,03 | 3,94 | 3,86 | 3,80 | |
8,68 | 6,36 | 5,42 | 4,89 | 4,56 | 4,32 | 4,14 | 4,00 | 3,89 | 3,80 | 3,73 | 3,67 | |
8,53 | 6,23 | 5,29 | 4,77 | 4,44 | 4,20 | 4,03 | 3,89 | 3,78 | 3,69 | 3,61 | 3,55 | |
8,40 | 6,11 | 5,18 | 4,67 | 4,34 | 4,10 | 3,93 | 3,79 | 3,68 | 3,59 | 3,52 | 3,45 |
Уровень значимости
к1 к2 | 2 | |||||||||||
18,51 | 19,00 | 19,16 | 19,25 | 19:30 | 19,33 | 19,36 | 19,37 | 19,38 | 19,39 | 19,40 | 19,41 | |
10,13 | 9,55 | 9,28 | 9,12 | 9,01 | 8,94 | 8,88 | 8,84 | 8,81 | 8,78 | 8,76 | 8,74 | |
7,71 | 6,94 | 6,59 | 6,39 | 6,26 | 6,16 | 6,09 | 6,04 | 6,00 | 5,96 | 5,93 | 5,91 | |
6,61 | 5,79 | 5,41 | 5,19 | 5,05 | 4,95 | 4,88 | 4,82 | 4,78 | 4,74 | 4,70 | 4,68 | |
5,99 | 5,14 | 4,76 | 4,53 | 4,39 | 4,28 | 4,21 | 4,15 | 4,10 | 4,06 | 4,03 | 4,00 | |
5,59 | 4,74 | 4,35 | 4,12 | 3,97 | 3,87 | 3,79 | 3,73 | 3,68 | 3,63 | 3,60 | 3,57 | |
5,32 | 4,46 | 4,07 | 3.84 | 3,69 | 3,58 | 3,50 | 3,44 | 3,39 | 3,34 | 3,31 | 3,28 | |
5,12 | 4,26 | 3,86 | 3,63 | 3,48 | 3,37 | 3,29 | 3,23 | 3,18 | 3,13 | 3,10 | 3,07 | |
4,96 | 4,10 | 3.71 | 3,48 | 3,33 | 3,22 | 3,14 | 3,07 | 3,02 | 2,97 | 2,94 | 2,91 | |
4,84 | 3,98 | 3,59 | 3,36 | 3,20 | 3,09 | 3,01 | 2,95 | 2,90 | 2,86 | 2,82 | 2,79 | |
4,75 | 3,88 | 3,49 | 3,26 | 3,11 | 3,00 | 2,92 | 2,85 | 2,80 | 2,76 | 2,72 | 2,69 | |
4,67 | 3,80 | 3,41 | 3,18 | 3,02 | 2,92 | 2,84 | 2,77 | 2,72 | 2,67 | 2,63 | 2,60 | |
4,60 | 3,74 | 3,34 | 3,11 | 2,96 | 2,85 | 2,77 | 2,70 | 2,65 | 2,60 | 2,56 | 2,53 | |
4,54 | 3,68 | 3,29 | 3,06 | 2.90 | 2,79 | 2,70 | 2,64 | 2,59 | 2,55 | 2,51 | 2,48 | |
4,49 | 3,63 | 3,24 | 3.01 | 2.85 | 2,74 | 2,66 | 2,59 | 2,54 | 2,49 | 2,45 | 2,42 | |
4,45 | 3,59 | 3,20 | 2,96 | 2,81 | 2,70 | 2,62 | 2,55 | 2,50 | 2,45 | 2,41 | 2,38 |
ПРИЛОЖЕНИЕ 7
Критические точки распределения Стьюдента