Методика обучения сравнению множеств на основе счета (задача 4)
Предварительная работа
После изучения способов образования чисел и видов отношений между числами показываем возможности использования счета для сравнения множеств.
Методика обучения
«Люди придумали счет и числа для своего удобства. Числа мы сравниваем в уме, это быстрее, чем раскладывать предметы парами».
Фрагмент:
Программная задача: научить сравнивать множества по количеству на основе счета.
Наглядный материал: четыре круга, три квадрата расположены так, чтобы не прослеживалось приложение.
Ход:
I. Работа с демонстрационным материалом
—Что это? О О О О
—Что это? □ □ □
—Что нужно сделать, чтобы узнать, чего больше, чего
меньше?
—Посчитайте.
—Сколько кругов?
—Сколько квадратов?
—Какое число больше?
—Какое число меньше?
—Значит, чего больше? Чего меньше?
—А как, не считая, проверить? (Способом приложения.)
//. Работа с раздаточным материалом
Аналогичная работа на другом наглядном материале. Делаем; вывод:
Чтобы сравнить, чего больше, а чего меньше, надо посчитать и сравнить числа.
Усложнения
1. Увеличиваем количество элементов в сравниваемых множествах от 1 до 10.
2. Постепенно отменяем сравнение множеств приемами наложения и приложения, используя только знание отношений между числами.
Методика формирования понимания абстрактности числа (задача 5)
Предварительная работа
После обучения приемам счета, в процессе формирования счетной деятельности, знакомства с отношениями между числами, сравнения множеств по количеству на основе счета показываем, что число предметов в группе не зависит от их качественных признаков (формы, размера, цвета и др.) и их пространственного расположения. Это помогает детям научиться воспринимать число как абстрактное математическое понятие — количественную характеристику множества, раскрывает закон сохранения количества. Данная работа полезна для развития абстрактного мышления у дошкольников.
Методика обучения
В процессе практических упражнений с предметами, картинками, геометрическими фигурами показываем независимость числа сначала от размеров предметов, затем от расстояния между предметами, потом от конфигурации их расположения и обсуждаем это. Сначала рассматриваем равночисленные множества, затем неравночисленные.
Независимость числа от размера предметов
Наглядный материал
Одинаковые предметы двух контрастных размеров, расположенные так, чтобы не прослеживалось приложение и действительно казалось, что одних предметов больше, чем других.
Фрагмент 1
— Что это ?
□ □□ □ □
—Чем отличаются?
—Какие по размеру?
—Каких квадратов кажется больше?
—Каких квадратов кажется меньше?
—Что нужно сделать, чтобы узнать точно?
— Посчитайте!
—По скольку их?
—Квадратов по пять, значит поровну.
—Почему мы вначале ошиблись?
—Больших квадратов кажется больше, маленьких квадратов кажется меньше, но их поровну, потому что по пять.
—Как, не считая, проверить? (Приложением.)
Фрагмент 2
— Что это ?
—Чем отличаются?
—Какие по размеру?
—Каких фигур кажется больше?
—Каких фигур кажется меньше?
—Что нужно сделать, чтобы узнать точно?
—Посчитайте!
—Какое число больше, 5 или 4?
—Какое число меньше?
—Значит, чего больше? Чего меньше?
—Почему мы вначале ошиблись?
—Кругов кажется больше, потому что они большие, треугольников кажется меньше, потому что они маленькие. Посчитав, можно узнать точно: кругов меньше, а треугольников больше, потому что 4 < 5, а 5 > 4.
• Как, не считая, проверить? (Приложением.)
Задание студентам:
Напишите самостоятельно схему диалога.
Схема:
—Что это?
—Чем отличаются?
—Чего кажется больше?
—Чего кажется меньше?
—Как узнать точно?
—Посчитайте!
—Какое число больше?
—Какое число меньше?
—Значит, чего больше?
—Чего меньше?
—Почему мы ошиблись вначале?
—Как, не считая, проверить?