Статистическая обработка результатов психолого-педагогических

Исследований

В любом исследовании всегда важно обеспечить массовость и предста­вительность (репрезентативность) объектов изучения. Для решения этого вопроса обычно прибегают к математическим методам расчета минимальной величины подлежащих исследованию объектов (групп респондентов), чтобы на этом основании можно было сделать объ­ективные выводы.

По степени полноты охвата первичных единиц статистика делит исс­ледования на сплошные, когда изучаются все единицы изучаемого явления, и выборочные, если изучению подвергается только часть интересующей со­вокупности, взятая по какому-либо признаку. Исследователю не всегда представляется возможность изучить всю совокупность явлений, хотя к этому постоянно следует стремиться (не хватает времени, средств, необ­ходимых условий и т. д.); с другой стороны, часто сплошное исследование просто не требуется, так как выводы будут достаточно точными после изучения определенной части первичных единиц.

Теоретической основой выборочного способа исследования является теория вероятностей и закон больших чисел. Чтобы исследование распола­гало достаточным количеством фактов, наблюдений, используют таблицу достаточно больших чисел. От исследователя в данном случае требуется установление величины вероятности и величины допускаемой ошибки. Пусть, например, допускаемая ошибка в выводах, которые должны быть сделаны в результате наблюдений, по сравнению с теоретическими предпо­ложениями, не должна превышать 0,05 как в положительную, так и в отри­цательную стороны (иначе говоря, мы можем ошибиться не более чем в 5 случаев из 100). Тогда по таблице достаточно больших чисел (см. табл. 6.7)1 находим, что правильное заключение может быть высказано в 9 случа­ев из 10 тогда, когда число наблюдений будет не менее 270, в 99 случа­ев из 100 при наличии не менее 663 наблюдений и т. д. Значит, с увели­чением точности и вероятности, с которой мы предполагаем сделать выво­ды, число требуемых наблюдений возрастает. Однако в психолого-педагогическом исследовании оно не должно быть чрезмерно большим. 300–500 наблюдений часто является вполне достаточным для основательных выводов.

Данный способ определения величины выборки является наиболее простым. Математическая статистика располагает и более сложными мето­дами вычисления требуемых выборочных совокупностей, которые подробно освещены в специальной литературе.

Однако соблюдение требований массовости еще не обеспечивает на­дежности выводов. Они будут достоверны тогда, когда выбранные для наб­людения (бесед, эксперимента и т. д.) единицы являются достаточно представительными для изучаемого класса явлений.

Таблица 6.7

Краткая таблица достаточно больших чисел

Величина вероятности     Допустимая ошибка 0,85 0,90 0,95 0,99 0,995 0,999
10,05
10,04
10,03
10,02
10,01

Репрезентативность единиц наблюдения обеспечивается прежде всего их случайным выбором с помощью таблиц случайных чисел. Положим, требу­ется определить 20 учебных групп для проведения массового эксперимента из имеющихся 200. Для этого составляется список всех групп, который нумеруется. Затем из таблицы случайных чисел выписывается 20 номеров, начиная с какого-либо числа, через определенный интервал. Эти 20 случайных чисел по соблюдению номеров определяют те группы, которые нужны исследователю. Случайный выбор объектов из общей (гене­ральной) совокупности дает основание утверждать, что полученные при исследовании выборочной совокупности единиц результаты не будут резко отличаться от тех, которые имелись бы в случае исследования всей сово­купности единиц.

В практике психолого-педагогических исследований применяются не только простые случайные отборы, но и более сложные методы отбора: расслоенный случайный отбор, многоступенчатый отбор и др.

Математические и статистические методы исследования являются так­же средствами получения нового фактического материала. С этой целью используются приемы шаблонирования, повышающие информативную емкость анкетного вопроса и шкалирования, дающего возможность более точно оце­нивать действия как исследователя, так и исследуемых.

Шкалы возникли из-за необходимости объективно и точно диагности­ровать и измерять интенсивность определенных психолого-педагогических явлений. Шкалирование дает возможность упорядочить явления, количественно оце­нить каждое из них, определить низшую и высшую ступени исследуемого явления.

Так при исследовании познавательных интересов слушателей можно установить их границы: очень большой интерес – очень слабый интерес. Между этими границами ввести ряд ступеней, создающих шкалу познаватель­ных интересов: очень большой интерес (1); большой интерес (2); средний (3); слабый (4); очень слабый (5).

В психолого-педагогических исследованиях используются шкалы разных видов, например,

а) Трехмерная шкала

Очень активный……..…………..10

Активный…………………………5

Пассивный…...…………………...0

б) Многомерная шкала

Очень активный…………………..8

Среднеактивный………………….6

Не слишком активный…………...4

Пассивный………………………..2

Полностью пассивный…………...0

в) Двусторонняя шкала.

Очень интересуется……………..10

Достаточно интересуется………...5

Равнодушен……………………….0

Не интересуется…………………..5

Совершенно нет интереса………10

Числовые оценочные шкалы дают каждому пункту определенное число­вое обозначение. Так, при анализе отношения студентов к учебе, их настойчивости в работе, готовности к сотрудничеству и т.п. можно сос­тавить числовую шкалу на основе таких показателей: 1 – неудовлетвори­тельно; 2 – слабо; 3 – средне; 4 – выше среднего, 5 – намного выше среднего. В таком случае шкала приобретает следующий вид (см. табл. 6.8):

Таблица 6.8

Качество Степени качества
Отношение к учебе
Настойчивость в труде
Готовность к сотрудничеству
Аккуратность в выполнении заданий
Целеустремленность

Если числовая шкала биполярна, используется биполярная упорядо­ченность с нулевой величиной в центре:

Дисциплинированность Недисциплинированность

Ярко выраженная 5 4 3 2 1 0 1 2 3 4 5 Не ярко выраженная

Оценочные шкалы могут быть изображены графически. В этом случае они выражают категории в наглядной форме. При этом каждое деление (ступень) шкалы характеризуется вербально.

Рассматриваемые методы играют большую роль в анализе и обобще­нии полученных данных. Они позволяют установить различные соотношения, корреляции между фактами, выявить тенденции в развитии психолого-педагогических явлений. Так, теория группировок математической статистики помогает определить, какие факты из собранного эмпирического материала сопоста­вимы, по какому основанию их правильно сгруппировать, какой степени достоверности они будут. Все это позволяет избежать произвольных мани­пуляций с фактами и определить программу их обработки. В зависимости от целей и задач обычно применяют три вида группировок: типологичес­кую, вариационную и аналитическую. Типологическая группировка используется, когда необходимо разбить полученный фактический материал на качественно однородные единицы (распределение количества нарушений дисциплины между различными категориями студентов, разбивка показателей выполнения ими физических упражнений по годам учебы и т.п.).

В случае необходимости сгруппировать материал по величине како­го-либо изменяющегося (варьирующего) признака – разбивка групп обучающихся по уровню успеваемости, по процентам выполнения заданий, однотип­ным нарушениям установленного порядка и т.п. – применяется вариацион­ная группировка, дающая возможность последовательно судить о структуре изучаемого явления.

Аналитический вид группировки помогает устанавливать взаимосвязь между изучаемыми явлениями (зависимость степени подготовки студентов от различных методов обучения, качества выполняемых заданий от темпе­рамента, способностей и т.д.), их взаимозависимость и вза­имообусловлен-ность в точном исчислении.

Насколько важна работа исследователя по группировке собранных данных, свидетельствует тот факт, что ошибки в этой работе обесценива­ют самую исчерпывающую и содержательную информацию.

В настоящее время математические основы группировки, типоло­гии, классификации получили наиболее глубокое развитие в социологии. Современные подходы и методы типологии и классификации в социологичес­ких исследованиях могут быть с успехом применены в психологии и педагогике.

В ходе исследования используются приемы итогового обобщения дан­ных. Одним из них является прием составления и изучения таблиц.

При составлении сводки данных относительно одной статистической величины образуется ряд распределения (вариационный ряд) значения этой величины. Примером такого ряда (см. табл. 6.9) может служить сводка данных относительно окружности груди 500 лиц.

Таблица 6.9

Окружность груди в см Число людей
Итого

Сводка данных одновременно по двум и более статистическим величи­нам предполагает составление таблицы распределения, раскрывающей расп­ределение значений одной статической величины в соответствии со значе­ниями, которые принимают другие величины.

В качестве иллюстрации при­водится таблица 6.10, составленная на основании статистических данных от­носительно окружности груди и веса этих людей.

Таблица 6.10

Окружность груди в см Вес в кг
Итого
- - - - - - - -
- - - - - -
- - -
- -
- - -
- -
- - - -
- - -
- - - - - -
- - - - - - -
Итого

Таблица распределения дает представление о соотношении и связи, существующих между двумя величинами, а именно: при малом весе частоты располагаются в верхней левой четверти таблицы, что указывает на пре­обладание лиц с малой окружностью груди. По мере увеличения веса до среднего значения распределение частот передвигается в центр таблички. Это указывает, что люди, вес которых ближе к среднему, имеют окруж­ность груди, также близкую к среднему значению. При дальнейшем увели­чении веса частоты начинают занимать правую нижнюю четверть таблички. Это свидетельствует о том, что у человека с весом более среднего ок­ружность груди также выше среднего объема.

Из таблицы следует, что установленная связь не строгая (функцио­нальная), а вероятностная, когда с изменениями значений одной величины другая изменяется как тенденция, без жесткой однозначной зависимости. Подобные связи и зависимости часто встречаются в психологии и педагогике. В настоя­щее время они выражаются обычно с помощью корреляционного и регрессивного анализа.

Вариационные ряды и таблицы дают представление о статике явления, динамику же могут показать ряды развития, где первая строка содержит последовательные этапы или промежутки времени, а вторая – полученные на этих этапах значения изучаемой статистической величины. Так выявля­ются возрастание, убывание или периодические изменения изучаемого яв­ления, вскрываются его тенденции, закономерности.

Таблицы могут заполняться абсолютными величинами, или сводными цифрами (средними, относительными). Результаты статистической работы – помимо таблиц часто изображаются графически в виде диаграмм, фигур и т. д. Основными способами графического изображения статистических вели­чин являются: способ точек, способ прямых и способ прямоугольников. Они просты и доступны каждому исследователю. Техника их использования – проведение осей координат, установление масштаба, и выписка обозна­чения отрезков (точек) на горизонтальных и вертикальной осях.

Диаграммы, изображающие ряды распределения значений одной статис­тической величины, позволяют составить кривые распределения.

Графическое изображение двух (и более) статистических величин да­ет возможность образовать некоторую кривую поверхность, называемую по­верхностью распределения. Ряд развития при графическом исполнении об­разуют кривые развития.

Графическое изображение статистического материала позволяет глуб­же проникнуть в смысл цифровых величин, уловить их взаимозависимости и черты изучаемого явления, которые трудно заметить в таблице. Исследо­ватель освобождается от той работы, которую он вынужден был бы проде­лать, чтобы разобраться с обилием цифр.

Таблицы и графики – важные, но только первые шаги в исследовании статистических величин. Основным же методом является аналитический, оперирующий математическими формулами, с помощью которых выводятся так называемые “обобщающие показатели”, то есть абсолютные величины, при­веденные в сравнимый вид (относительные и средние величины, балансы и индексы). Так, с помощью относительных величин (процентов) определяют­ся качественные особенности анализируемых совокупностей (например, отношение отличников к общему числу студентов; числа ошибок при работе на сложной аппаратуре, вызванных психической неус­тойчивостью обучающихся, к общему числу ошибок и т.п.). То есть выявля­ются отношения: части к целому (удельный вес), слагаемых к сумме (структура совокупности), одной части совокупности к другой ее части; характеризующие динамику каких-либо изменений во времени и др.

Как видно, даже самое общее представление о методах статистичес­кого исчисления говорит о том, что эти методы располагают большими возможностями в анализе и обработке эмпирического материала. Разумеет­ся, математический аппарат может бесстрастно обработать все, что в не­го вложит исследователь и достоверные данные, и субъективные домыслы. Вот почему совершенное владение математическим аппаратом обработки на­копленного эмпирического материала в единстве с доскональным знанием качественных характеристик исследуемого явления является необходимым для каждого исследователя. Только в этом случае возможен отбор качест­венного, объективного фактического материала, его квалифицированная об­работка и получение достоверных итоговых данных.

Такова краткая характеристика наиболее часто применяемых методов исследования проблем психологии и педагогики. Следует подчеркнуть, что ни один из рассмотренных методов, взятый сам по себе, не может претендовать на универсальность, на полную гарантию объективности получаемых данных. Так, элементы субъективизма в ответах, полученных путем опроса респондентов, очевидны. Результаты наблюдений, как правило, не свободны от субъективных оценок самого исследователя. Данные, взятые из различной документации, требуют одновременно проверки достоверности этой доку­ментации (особенно личных документов, документов из “вторых рук” и т.д.).

Поэтому каждому исследователю следует стремиться, с одной сторо­ны, к совершенствованию техники применения любого конкретного метода, а с другой – к комплексному, взаимоконтролирующему использованию раз­ных методов для изучения одной и той же проблемы. Владение всей систе­мой методов дает возможность разработать рациональную методику иссле­дования, четко организовать и провести его, получить существенные тео­ретические и практические результаты.

Наши рекомендации