Быстроту затухания, т.е. быстроту убывания амплитуды, определяют логарифмическим декрементом затухания
или, после подстановки в это отношение значений амплитуд в моменты времени и ,
.
Вынужденные колебания
Чтобы компенсировать потери энергии на преодоление силы трения, необходимо колеблющейся точке извне добавлять энергию, т.е. необходимо действовать на точку внешней вынуж-дающей силой . Эта сила должна удовлетворять следующим требованиям: она должна быть периодической и иметь частоту , отличную от частоты собственных колебаний точки, , т.е. её можно записать как
где - амплитуда вынуждающей силы.
Следовательно, при вынужденных колебаниях точка движется под действием равнодействующей сил и . Уравнение движения теперь запишется в виде
или в проекциях на ось
.
После деления на m и введения применяемых ранее обозначений, получим дифференциальное уравнение 2-го порядка для вынужденных колебаний
.
Решением этого уравнения является функция
.
Точнее
Здесь – амплитуда вынужденных колебаний. Как видим, она зависит от частоты и амплитуды вынуждающей силы. Анализируя решение, замечаем, что колебания точки происходят с частотой вынуждающей силы, колебание остается гармоническим с новой начальной фазой .
Если коэффициент затухания стремится к нулю (это возможно при малом сопротивлении), то
График смещения вынужденных колебаний показан на рис.2.6. Начальный период мы не рассматриваем. Все проведенные выше рассуждения касались только установившихся вынужденных колебаний.
График зависимости амплитуды вынужденных колебаний от частоты вынуждающей силы при различных коэффициентах затухания показан на рис.2.7.
Рис. 2.6
Рис.2.7
При выполнении условия амплитуда резко возрастает . Это явление резкого возрастания амплитуды при равенстве собственной частоты колебаний точки и частоты вынуждающей силы называется явлением механического резонанса.
Явление механического резонанса может быть полезным: при малых усилиях можно увеличить амплитуду колебания; но может быть и вредным: разрушение, действие вибраций на организм. Предупреждают резозанс тем, что создают колебания с частотой , отличной от частоты вынуждающей силы.
Автоколебания
Мы выяснили, что амплитуда вынужденных колебаний зависит от амплитуды и частоты внешней, вынуждающей, силы.
Это означает, что внешнее воздействие “управляет” колебаниями системы и сообщает ей энергию, не согласовываясь с процессами, происходящими в системе. Можно создать такую систему, в которой вынужденные колебания происходят с собственной частотой. Такие системы называются автоколебательными, а происходящие в них колебания - автоколебаниями.
Механическая автоколебательная система содержит источник внешней силы, постоянной по величине и направлению, которая периодически в необходимые моменты “подталкивает” колеблющееся тело и таким образом поддерживает его свободные колебания незатухающими. Блок-схема автоколебательной системы представлена на рис. 2.8.
Рис. 2.8.
Сложение колебаний
Колебательное движение, при котором смещение описывается во времени любым законом, но не законом синуса или косинуса, является сложным колебанием. Сложное колебание – это результат сложения простых, гармонических, колебаний. Поэтому мы должны уметь складывать колебания.
Смещение тела, участвующего одновременно в двух или нескольких колебаниях, находится на основании принципа суперпозиции, согласно которому эти колебания накладываются, не влияя одно на другое.
I.Однонаправленные колебания.