Find the introductory words used by the author and explain their role in the text

Give a topic sentence for each paragraph and write a summary of the text, using introductory words.

Scanning texts.

Мы точно не знаем, с какого срока плод способен воспринимать звуки. По данным французских исследователей, первыми «слуховыми» ощущениями плода являются вибрационные. В этот период он воспринимает все акустические колебания как вибрацию, которые создают у него картину пульсирующего мира. До 16 недель внутриутробного развития у плода формируется внутреннее ухо (орган слуха), которое начинает функционировать примерно с 20 недель. С этого времени доходящие до него звуковые волны постепенно начинают вызывать именно слуховые ощущения. Можно сказать, что окружающий мир, воспринимаемый плодом как вселенская пульсация, постепенно начинает распадаться на отдельные звуки. Первыми из них выделяются внутренние шумы, создаваемые материнским организмом: стук сердца, голос, шум легких, перистальтика кишечника, работа желудка. Ведущими среди них по уровню громкости являются стук сердца и голос матери.

На шестом-седьмом месяцах внутриутробной жизни плод не только слышит, но и хорошо дифференцирует внутренние звуки. Более того, для него далеко не безразлично, взволнованно или спокойно бьется сердце матери, грустно или весело звучит ее голос, ровно или прерывисто, с напряжением дышат ее легкие.

С этого же времени становится возможным зафиксировать реакцию плода на внешнее звуковое воздействие: в ответ на резкие звуки малыш пугливо сжимается или начинает вести себя беспокойно.

Таким образам, с этого момента мы можем говорить не только о способности плода дифференцировать внутренние звуки и о его умении отличать их от внешних шумов, но и о его эмоциональном восприятии звуков и о формировании соответствующего опыта.

С сайта vpologenii.com

По сравнению с другими сенсорными чувствами, если рассматривать их с точки зрения исторического развития, слух — одно из самых молодых. Живые существа, находившиеся на ранних ступенях эволюции, научились получать из окружающего мира визуальную информацию. Однако зрение имеет существенный недостаток: прием информации зависит от наличия хорошего обзора и сильно затрудняется ночью.

Затем животные научились воспринимать запахи, что стало шагом вперед. Ведь обоняние действует и в темноте, а запахи способны огибать препятствия. Но и это сенсорное чувство оказалось несовершенным, потому что информация, получаемая с помощью обоняния, передается слишком медленно, а, кроме того, зависит от направления ветра. И лишь после этого появился слух, который превзошел и зрение, и обоняние. Слух действует в темноте и при наличии препятствий, передача слуховой информации протекает быстро и с высокой плотностью.

Так как филогенез, т.е. процесс исторического развития живых организмов, всегда до некоторой степени отражается в онтогенезе (процессе индивидуального развития организма), слуховой орган в процессе эмбрионального развития формируется относительно поздно. Так, например, филогенетически старший орган равновесия развивается раньше слухового органа.

А. Кайльман, Horakustik, № 9, 2002

UNIT 7

Pre-reading questions.

1. What is stress? What causes it?

2. Is it necessary to try to relieve stress? Why?

Sussing Out Stress

Herman Englert

Scientific American (special issue Mind)

Road rage, heart attacks, migraine headaches, stomach ulcers, irritable bowel syndrome, haiк loss among women – stress is blamed for all those and many other ills. Nature provided our prehistoric ancestors with a tool to help them meet threats: a quick activation system that focused attention, quickened the heart beat, dilated blood vessels and prepared muscles to fight or flee the bear stalking into their cave. But we, as modern people, are subjected to stress constantly from commuter traffic, deadlines, bills, angry bosses, irritable spouses, noise, as well as social pressure, physical sickness and mental challenges. Many organs in our bodies are consequently hit with a relentless barrage of alarm signals that can damage them and ruin out health.

What exactly happens in our brains and bodies when we are under stress? Which organs are activated? When do the alarms begin to cause critical problems? We are only now formulating a coherent model of how ongoing stress hurts us, yet in it we are finding possible clues to counteracting the attack.

The Road to Overload

In recent decades, researchers have identified many parts of the brain and body that contribute importantly to the stress reaction – the way we respond to external stressors. These regions process sensory and emotional information and communicate with a wide network of nerves, organs, blood vessels and muscles, relocating the body’s energy reserves so that we can assess and respond to situations.

When stress begins, a small area deep in the brain called the hypothalamus pulls the strings. It contains several different nuclei, or collections of neutrons, that underlie various tasks. They regulate sleep and appetite, for example, and the balance among different hormones. The most critical collection of neurons is the paraventricular nucleus, which secretes corticotrophin-releasing hormone (CRH), a messenger compound that unleashes the stress reaction.

CRH was discovered in 1981 by Wylie Vale and his colleagues at the Slak Institute for Biological Studies in San Diego and since then has been widely investigated. It controls the stress reaction in two ways.

Primarily, it reaches organs via the so-called long arm – hormone signal pathway from the hypothalamus to the pituitary gland in the brain and to the adrenal gland in the kidneys. This long arm is also known as the hypothalamus-pituitary –adrenal axis.

The arrival of CRH tells the pituitary to release adrenocorticotropic hormone (ACTH) into the bloodstream. ACTH, in turn, activates the adrenal glands to release glucocortidoid hormones into the blood. Levels of glucocorticoids typically follow a daily rhythm: high in the early morning and lower late in the day. One of their most important tasks is to increase glucose in the blood to provide energy for muscles and nerves. They also control glucose metabolism and the sleep-wake cycle. Because hormones regulate such crucial functions, their levels have to be precisely controlled, and they are thus subject to a feedback mechanism in the hypothalamus, which can quickly return the system to lower values.

CRH also makes its effects felt by acting on the “short arm” pathway. A small region in the brain stem termed the locus coeruleus functions as a kind of neural relay station. It links the CRH-producing brain regions with the autonomic nervous system, which governs the ongoing physiological processes we never have to think about, such as breathing, blood pressure, digestion and so on.

The stress response system produces positive feedback to strengthen its own action when needed, but when daily stress builds up, it can become unnecessarily intense and sustained. Whether the response is appropriate or not depends on cells that coat the pituitary gland and other part of the system. CRH sends signals into these cells, by docking with type 1 receptor molecules on the cells’ membranes. Researchers at the Salk Institute and at the Max Plank Institute of Psychiatry in Munich bred mice in which type 1 receptors were lacking. Even when these mice were repeatedly exposed to stressful situations, levels of certain stress hormones in their blood never rose above normal. The animals obviously felt less stressed. Perhaps drugs that suppress the effects of CRH on these receptors might reduce stress levels in harried humans, too.

Organs Break Down

Our new knowledge of the stress system provides strong clues as to how stress can make us sick and how we might counteract its effects. For a mouse or human, any activation of the stress system counts as an extraordinary event – and when the emergency ends, the system must quickly be turned off so that the affected organs can recover. But when external circumstances simulate the stress system repeatedly, it never stops reacting, and organs are never allowed to relax.

Such chronic strain leaves many tissues vulnerable to damage. The reproductive organs, for example, often become less effective. Research indicates that male and female athletes and ballet dancers who subject themselves to great physical demands over many years produce fewer sperm or egg cells.

Anorexia and long-term fasting have similar harmful effect on fertility. Both allow the level of CRH in the brain to increase. Anorexic patients have higher late-day levels of the stress hormone glucocorticoid in their plasma and urine than healthy people do. And when their pituitaries are artificially stimulated with CRH, anorexics secrete less of the hormone that mediates the stress response – evidence that their hypothalamus-pituitary-adrenal axis is hyperactive.

Excessive CRH from chronic stress also reduces the body’s secretion of growth hormone, as well as its production of the substance that mediates the effects of growth hormone on organs. Children who are under great stress therefore grow more slowly. Among adults, the growth of muscles and bones and the metabolism of fat are hindered.

One of the most prevalent physiological effects of stress involves the stomach and intestines. When the hypothalamus-pituitary-adrenal axis is too active and levels of CRH in the brain are simultaneously too high, signals on the vagus nerve are blocked. This nerve, a major thoroughfare of the autonomic nervous system, controls contractions of the stomach and digestive tract. (It also sends nerve impulses to the heart and motor muscles.) A classic example of a stress-induced reaction by these organs is the shutdown of digestion after surgery. Some studies suggest that irritable bowel syndrome, a widespread complaint, is caused by too much CRH.

Other recent investigations find that victims of sexual assault or abuse, who almost always suffer some level of psychological damage even years after the abuse occurred, frequently also experience digestive disorders. In these same people, most of them young women, the hypothalamus-pituitary-adrenal axis is hyperactive. If it remains so for a long time, the metabolism of carbohydrates changes. Their body fat redistributes: fat deposits under the skin shift to the abdomen. Cells in their body may stop taking up the sugar glucose in response to insulin, a condition that can lead to diabetes in certain people.

An overactive hypothalamus-pituitary-adrenal axis can also cause symptoms that mirror those of mental illness. Indeed, the latest pharmacological research shows that too much CRH plays a role in mental disorders. Many depression patients, for example, have far too much cortisol in their blood. And the glucocorticoids in their blood are unable to suppress activity in the hypothalamus-pituitary-adrenal axis. In addition, they have too much CRH in their cerebrospinal fluid. Depressed people who commit suicide often have fewer CRH receptors in their brain’s frontal cortex, an indicator that, to defend itself against too much CRH, the brain reduces its susceptibility to the hormone.

The hypothalamus-pituitary-adrenal axis may also enhance phobias and panic attacks. Here again, too much CRH is present, causing the brain to be overactive. When CRH is injected into the brains of laboratory animals, they exhibit extreme fear. Patients with panic disorders such as agoraphobia (fear of open spaces) or claustrophobia (fear of confined spaces) secrete too little ACTH after they are given CRH as a drug. Clinical studies are under way in Europe, to see whether patients with panic disorders can be helped by drugs that suppress the type 1 CRH receptors. Eventually, it is hoped, researchers will find ways to interrupt the over-stimulated chain of command.

Measuring the Risk

Stress can make us sick, but not all stress is the same. A certain baseline level, called positive stress, is even desirable, because it keeps us mentally and physically ready to act and to perform well. But when are we at risk? There is no generally accepted answer to this question. We do not know how much workplace noise or how many broken relationships our stress systems can withstand. Yet an expanding portfolio of research shows that chronic stress is compromising our organs and bodies. Although we no longer face the bear in the cave, we may be in more fire straits, dealing with many more insidious stressors that are always rearing at us.

Before we can reduce this threat, we must learn how to measure each person’s stress level. Physiologists are working on a set of parameters – such as CRH levels – that would be used to evaluate all the organs involved in the stress reaction. Once we know an individual is being harmed, then we must reduce the levels of stress he or she faces.

That, of course may not always be possible in our complex world. So we must also develop therapies that prevent our stress system from ceaselessly racing, CRH, ACTH, their receptor and the hypothalamus-pituitary-adrenal axis are all possible targets. Researchers are busily investigating them – free, one hopes, of the stress that often accompanies important scientific pursuits.

Answer the questions.

1. What does the stress response system include?

2. What happens in the brain under stress?

3. What is the difference in the body reaction to short-term and chronic stress?

4. What is positive stress?

2. Find in the text synonyms for the following words: relentless, to ruin, to withstand, thoroughfare, to link, barrage, insidious, to assess, to reduce, to build up, susceptible, fear, harried.

Наши рекомендации