Статическое электричество
ВОЗНИКНОВЕНИЕ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА
Под статическим электричеством понимают совокупность явлений, связанных с возникновением и релаксацией свободного электрического заряда на поверхности, или в объеме диэлектриков, или на изолированных проводниках.
Образование и накопление зарядов на перерабатываемом материале связано с двумя условиями. Во-первых, должен произойти контакт поверхностей, в результате которого образуется двойной электрический слой. Во-вторых, хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала. Заряды будут оставаться на поверхностях после их разделения только в том случае, если время разрушения контакта меньше времени релаксации зарядов. Последнее в значительной степени определяет величину зарядов на разделенных поверхностях.
Двойной электрический слой – это пространственное распределение электрических зарядов на границах соприкосновения двух фаз. Такое распределение зарядов наблюдается на границе металл – металл, металл – вакуум, металл – газ, металл – полупроводник, металл – диэлектрик, диэлектрик – диэлектрик, жидкость – твердое тело, жидкость – жидкость, жидкость – газ. Толщина двойного электрического слоя на границе раздела двух фаз соответствует диаметру иона (10-10 м).
Основная величина, характеризующая способность к электризации – удельное электрическое сопротивление поверхностей контактируемых материалов. Если контактирующие поверхности имеют низкое сопротивление, то при разделении заряды с них стекают, и раздельные поверхности несут незначительный заряд. Если же сопротивление высокое или велика скорость отрыва поверхностей, то заряды будут сохраняться.
Следовательно, основные факторы, влияющие на электризацию веществ, – их электрофизические параметры и скорость разделения. Экспериментально установлено, что чем интенсивнее ведется процесс (чем выше скорость отрыва), тем больший заряд остается на поверхности.
Условно принято, что при удельном электрическом сопротивлении материалов менее 105Ом · м заряды не сохраняются и материалы не электризуются.
Опытами установлено, что при соприкосновении (трении) двух диэлектриков тот из них, который имеет большее значение диэлектрической постоянной, заряжается положительно, в то время как материал с меньшей диэлектрической постоянной заряжается отрицательно.
ОПАСНОСТЬ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА
Основная опасность, создаваемая электризацией различных материалов, состоит в возможности искрового разряда как с диэлектрической наэлектризованной поверхности, так и с изолированного проводящего объекта.
Разряд статического электричества возникает тогда, когда напряженность электрического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха эта величина составляет примерно 30 кВ/м.
Воспламенение горючих смесей искровыми разрядами статического электричества произойдет, если выделяющаяся в разряде энергия будет больше энергии, воспламеняющей горючую смесь, или, в общем случае, выше минимальной энергии зажигания горючей смеси.
Электростатическая искробезопасность объекта достигается при выполнении условия безопасности:
Wp ≤ К Wmin,
где Wp – максимальная энергия разрядов, которые могут возникнуть внутри объекта или на его поверхности, Дж; К – коэффициент безопасности, выбираемый из условий допустимой (безопасной) вероятности зажигания (К < 1,0); Wmin – минимальная энергия зажигания веществ и материалов, Дж.
Энергия(в Дж), выделяемая в искровом разряде с заряженной проводящей поверхности:
Wp =0,5 С φ2,
где С – электрическая емкость проводящего объекта относительно земли, Ф; φ – потенциал заряженной поверхности относительно земли, В.
Электростатическая искробезопасность объектов обеспечивается снижением электростатической искробезопасности объекта (снижением Wp), а также снижением чувствительности объектов, окружающей и проникающей в них среды к зажигающему воздействию статического электричества (увеличением Wmin).
Энергию разряда с заряженной диэлектрической поверхностью можно определить только экспериментально.
Минимальная энергия зажигания горючих смесей зависит от природы веществ и также определяется экспериментально.
Ниже приведены минимальные энергии зажигания Wmin (в мДж) некоторых паро- и газовоздушных смесей (см. табл. 24). Следует отметить, что указанные значения минимальной энергии зажигания достигаются для большинства паро- и газовоздушных смесей при напряжении 3000 В, а при 5000 В искровой разряд может вызвать воспламенение большей части горючих пылей и волокон.
Таблица 24
Минимальные энергии зажигания некоторых паро-и газовоздушных смесей
Вещество | Wmin, мДж | Вещество | Wmin, мДж |
Акрилонитрил | 0,16 | Метиловый спирт | 0,14 |
Аммиак | 0,680 | Пентан | 0,22 |
Ацетилен | 0,011 | Петролейный эфир | 0,18 |
Ацетон (при 25°С) | 0,406 | Пропан | 0,26 |
Бензин Б-70 | 0,15 | Пропилен | 0,17 |
Бензол | 0,21 | Пропиленоксид | 0,14 |
Бутадиен | 0,125 | Тетрагидропиран | 0,22 |
Бутан | 0,26 | Циклогексан | 0,223 |
Водород | 0,013 | Циклопропан | 0,23 |
Гексан | 0,23 | Этан | 0,24 |
Диэтиловый эфир | 0,19 | Этилацетат | 0,48 |
Изоктан | 0,28 | Этилен | 0,095 |
Изопентан | 0,21 | Этиленоксид | 0,06 |
Метан | 0,29 | Этиловый спирт | 0,14 |
В ряде случаев статическая электризация тела человека и затем последующие разряды с человека на землю или заземленное производственное оборудование, а также электрический разряд с незаземленного объекта через тело человека на землю могут вызвать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого движения человека, в результате которого человек может получить ту или иную механическую травму.
ЗАЩИТА ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА
Устранение опасности возникновения электростатических зарядов достигается применением ряда мер: заземлением, повышением поверхностной проводимости диэлектриков, ионизацией воздушной среды, уменьшением электризации горючих жидкостей.
Заземление используется преждевсего для производственного оборудования и емкостей для хранения легковоспламеняющихся и горючих жидкостей. Оборудование считается электростатически заземленным, если сопротивление в любой его точке не превышает 106 Ом. Значение сопротивления заземляющего устройства, предназначенного для защиты от статического электричества, допускается до100 Ом.
Поверхностная проводимость диэлектриков повышается при увеличении влажности воздуха или применении антистатических примесей. При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.
Антистатические вещества (графит, сажа) вводят в состав резинотехнических изделий, из которых изготовляют шланги для налива и перекачки легковоспламеняющихся жидкостей, что резко снижает опасность воспламенения этих жидкостей при переливании их в передвижные емкости (автоцистерны, железнодорожные цистерны). Металлические наконечники сливных шлангов во избежание проскакивания искр на землю или заземленные части оборудования дополнительно заземляют гибким медным проводником.
Ионизация воздуха приводит к увеличению его электропроводности, при этом происходит нейтрализация поверхностных зарядов ионами противоположного знака. Ионизация воздуха осуществляется воздействием на него высоковольтного электрического поля, образующего коронный разряд, либо воздействием источника радиоактивного излучения. Во многих случаях эффективнее применять комбинированные нейтрализаторы, представляющие совмещенный в одном устройстве радиоактивный и индукционный нейтрализаторы. Индукционный нейтрализатор состоит из несущей конструкции, на которой укреплены заземленные иглы. Под действием электрического поля, образованного зарядами наэлектризованного материала, около острия игл возникает ударная ионизация воздуха.
Уменьшение электризации горючих и легковоспламеняющихся жидкостей достигается: повышением электропроводности жидкости, введением в нее антистатических добавок, снижением скорости движения жидкостей – диэлектриков.
Для защиты работающих от статического заряда, который может накапливаться на них за счет емкости тела, равной примерно 200-250 пФ, используют обувь с электропроводящей подошвой. Предусматриваются также электропроводящие полы. При работах сидя применяют статические халаты в сочетании с электропроводной подушкой стула или электропроводные браслеты, соединенные с заземляющим устройством через сопротивление 105-107 Ом.
ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ
ХАРАКТЕРИСТИКИ ЭМП
Электромагнитное поле (ЭМП) представляет особую форму материи. Всякая электрически заряженная частица окружена электромагнитным полем, составляющим с ней единое целое. Но электромагнитное поле может существовать и в свободном, отделенном от заряженных частиц, состоянии в виде движущихся со скоростью, близкой к 3 · 108 м/с, фотонов или вообще в виде излученного движущегося с этой скоростью электромагнитного поля (электромагнитных волн).
Движущееся ЭМП (электромагнитное излучение – ЭМИ) характеризуется векторами напряженности электрического Е(В/м) и магнитного Н(А/м) полей, которые отражают силовые свойства ЭМП.
В электромагнитной волне векторы Е и Н всегда взаимно перпендикулярны. В вакууме и воздухе Е = 377 Н. Длина волны λ, частота колебаний f и скорость распространения электромагнитных волн в воздухе с связаны соотношением с = λ f. Например, для промышленной частоты f = 50 Гц длина волны λ=3х108/50=6000 км, а для ультракоротких частот f = 3 х 108 Гц длина волны равна 1 м. Около источника ЭМП выделяют ближнюю зону, или зону индукции, которая находится на расстоянии R≤λ/2π≈λ/6, и дальнюю зону, или зону излучения, в которой R>λ/6. В диапазоне от низких частот до коротковолновых излучений частотой < 100 МГц (таблица 25) ЭМП около генератора следует рассматривать как поле индукции, а рабочее место – находящимся в зоне индукции. В зоне индукции электрическое и магнитное поля можно считать независимыми друг от друга. Поэтому нормирование в этой зоне ведется как по электрической, так и по магнитной составляющей. В зоне излучения (волновой зоне), где уже сформировалась бегущая электромагнитная волна, наиболее важным параметром является интенсивность, которая в общем виде определяется векторным произведением Е и Н, а для сферических волн при распространении в воздухе может быть выражена как
Вт/м2,
где Рист – мощность излучения.
ИСТОЧНИКИ ЭМП И КЛАССИФИКАЦИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ
Естественными источниками электромагнитных полей и излучений являются прежде всего: атмосферное электричество, радиоизлучения солнца и галактик, электрическое и магнитное поля Земли. Все промышленные и бытовые электро- и радиоустановки являются источниками искусственных полей и излучений, но разной интенсивности. Перечислим наиболее существенные источники этих полей.
Электростатические поля возникают при работе с легко электризующимися материалами и изделиями, при эксплуатации высоковольтных установок постоянного тока.
Источниками постоянных и магнитных полей являются: электромагниты с постоянным током и соленоиды, магнитопроводы в электрических машинах и аппаратах, литые и металлокерамические магниты, используемые в радиотехнике.
Источниками электрических полей промышленной частоты (50 Гц) являются: линии электропередач и открытые распределительные устройства, включающие коммутационные аппараты, устройства защиты и автоматики, измерительные приборы, сборные, соединительные шины, вспомогательные устройства, а также все высоковольтные установки промышленной частоты.
Таблица 25
Спектр электромагнитных излучений
Название ЭМИ | Диапазон частот, Гц | Длины волн, м | |
Статические | Постоянные ЭМП | - | |
Низкочастотные | Крайне и сверхнизкие | 3 х (10°-102) | 108-106 |
Инфра- и очень низкие, низкие | 3 х (102-104) | 106-104 | |
Радиочастотные | Длинные волны (ДВ) | 3 x (104-105) | 104-103 |
Средние волны (СВ) | 3 x (105-106) | 103-102 | |
Короткие волны (KB) | 3 x (106-107) | 102-101 | |
Ультракороткие (УКВ) | 3 x (107-108) | 101-100 | |
Микроволны (СВЧ) | 3 x (108-1011) | 100-10-3 | |
Оптические | Инфракрасные | 3 x (1012-1014) | 10-4-10-6 |
Видимые | 3 x 1014 | (0,39-0,76) x 10-6 | |
Ультрафиолетовые | 3 x (1014-1016) | 10-6-10-8 | |
Ионизирующие | Рентгеновское излучение | 3 x (1017-1019) | 10-9-10-11 |
Гамма-излучение | 3 x (1020-1022) | 10-12-10-14 |
Магнитные поля промышленной частоты возникают вокруг любых электроустановок и токопроводов промышленной частоты. Чем больше ток, тем выше интенсивность магнитного поля.
Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, генераторы сверхвысоких частот, установки индукционного и диэлектрического нагрева, радары, измерительные и контролирующие устройства, исследовательские установки, высокочастотные приборы и устройства в медицине и в быту.
Источником электростатического поля и электромагнитных излучений в широком диапазоне частот (сверх- и инфранизкочастотном, радиочастотном, инфракрасном, видимом, ультрафиолетовом, рентгеновском) являются персональные электронно-вычислительные машины (ПЭВМ) и видеодисплейные терминалы (ВДТ) на электронно-лучевых трубках, используемые как в промышленности, научных исследованиях, так и в быту. Главную опасность для пользователей представляет электромагнитное излучение монитора в диапазоне частот 5 Гц–400 кГц и статический электрический заряд на экране.
Источником повышенной опасности в быту с точки зрения электромагнитных излучений являются также микроволновые печи, телевизоры любых модификаций, мобильные телефоны. В настоящее время признаются источниками риска в связи с последними данными о воздействии магнитных полей промышленной частоты: электроплиты с электроподводкой, электрогрили, утюги, холодильники (при работающем компрессоре) и другие бытовые электроприборы, включая электробритвы и электрочайники.
В таблице 25 представлен весь спектр электромагнитных излучений с указанием принятого на практике названия волн, диапазона частот и длин волн.
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ЗЕМЛИ - НЕОБХОДИМОЕ УСЛОВИЕ ЖИЗНИ ЧЕЛОВЕКА
Жизнь на нашей планете возникла в тесном взаимодействии с электромагнитными излучениями и, прежде всего, с электромагнитным полем Земли. Человек приспособился к земному полю в процессе своего развития, и оно стало не только привычным, но и необходимым условием нашей жизни. Как увеличение, так и уменьшение интенсивности естественных полей способны сказаться на биологических процессах.
Электромагнитная сфера нашей планеты определяется в основном электрическим (Е = 120-150 В/м) и магнитным (Н = 24-40 А/м) полями Земли, атмосферным электричеством, радиоизлучением Солнца и галактик, а также полями искусственных источников (мощных радиостанций, промышленного электротермического оборудования, исследовательских установок, измерительных и контролирующих устройств и др.). Как уже отмечалось, диапазон естественных и искусственных полей очень широк: начиная от постоянных магнитных и электростатических полей и кончая рентгеновским и гамма-излучением частотой 3 х 1021 Гц и выше. Каждый из диапазонов электромагнитных излучений по-разному влияет на развитие живого организма. В частности, ЭМИ светового диапазона (с длиной волн 0,39-0,76 мкм) не только играют огромную роль как сильный физиологический фактор биоритмики живого, но и оказывают мощное информационное воздействие на организм через органы зрения или другие световые рецепторы.
В дальнейшем ограничимся рассмотрением наиболее распространенных электромагнитных полей, используемых в технике и науке, а именно ЭМП промышленной частоты, статических полей и ЭМП радиочастот.
По поводу естественных полей отметим, что усиление электрического поля перед грозой и во время грозы характеризуется дискомфортностью самочувствия человека, а магнитные бури, связанные с солнечной активностью, влияют не только на ослабленных и пожилых людей, но являются одной из причин многих автодорожных и других аварий. Ослабленные естественные поля стали предметом изучения прежде всего в связи с развитием космонавтики. Опыты над животными, в частности мышами, показывают, что значительное уменьшение геомагнитного поля через определенный отрезок времени (во втором поколении) способно вызвать существенное изменение процессов жизнедеятельности: нарушается деятельность печени, почек, половых желез, но самое главное – появляются опухоли в разных органах. Существует гипотеза ученого из США Мак-Лина, связывающая увеличение раковых заболеваний человека со снижением магнитного поля нашей планеты, которое по его расчетам за последние 2,5 тыс. лет уменьшилось на 66%. Экранировка от электрических полей также не проходит бесследно для экспериментальных животных. Было отмечено увеличение смертности подопытных мышей после 2-3 недель пребывания в экранированном от внешних электрических полей пространстве, прежде всего за счет нарушений регуляции обмена веществ в организме.
Еще раз отметим, что если естественное поле Земли необходимо для жизни человека, а слабые искусственные ЭМП неоднозначно воздействуют на живой мир, нередко оказывая благоприятное влияние, то можно утверждать о вредном воздействии сильных полей на животных и человека, которое выражается у людей прежде всего в нарушениях функционального состояния центральной нервной и сердечно-сосудистой систем.
ВОЗДЕЙСТВИЕ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ НА ОРГАНИЗМ ЧЕЛОВЕКА
Механизм воздействия ЭМП на биологические объекты очень сложен и недостаточно изучен. Но в упрощенном виде это воздействие можно представить следующим образом: в постоянном электрическом поле молекулы, из которых состоит тело человека, поляризуются и ориентируются по направлению поля: в жидкостях, в частности в крови, под электрическим воздействием появляются ионы и, как следствие, токи. Однако ионные токи будут протекать в ткани только по межклеточной жидкости, так как при постоянном поле мембраны клеток, являясь хорошими изоляторами, надежно изолируют внутриклеточную среду.
При повышении частоты внешнего ЭМП электрические свойства живых тканей меняются: они теряют свойства диэлектриков и приобретают свойства проводников, причем это изменение происходит неравномерно. С дальнейшим возрастанием частоты индуцирование ионных токов постепенно замещается поляризацией молекул.
Переменное поле вызывает нагрев тканей человека как за счет переменной поляризации диэлектрика, так и за счет появления токов проводимости. Тепловой эффект является следствием поглощения энергии электромагнитного поля. На высоких частотах, прежде всего в диапазоне радиочастот (105-1011 Гц), энергия проникшего в организм поля многократно отражается, преломляется в многослойной структуре тела с разными толщинами слоев тканей. Вследствие этого поглощается энергия ЭМП неодинаково, отсюда воздействие на разные ткани происходит также неодинаково.
Тепловая энергия, возникшая в тканях человека, увеличивает общее тепловыделение тела. Если механизм терморегуляции тела не способен рассеять избыточное тепло, возможно повышение температуры тела. Это происходит, начиная с интенсивности поля равной 100 Вт/м2, которая называется тепловым порогом. Органы и ткани человека, обладающие слабо выраженной терморегуляцией, более чувствительны к облучению (мозг, глаза, почки, кишечник, семенники). Перегревание тканей и органов ведет к их заболеваниям, а повышение температуры тела на1°С и выше недопустимо из-за возможных необратимых изменений.
Исследования показали, что влияние ЭМП высоких частот, и особенно СВЧ, на живой организм обнаруживается и при интенсивностях ниже тепловых порогов, т. е. имеет место их нетепловое воздействие, которое, как предполагают, является результатом ряда микропроцессов, протекающих под действием полей.
Отрицательное воздействие ЭМП вызывает обратимые, а также необратимые изменения в организме: торможение рефлексов, понижение кровяного давления (гипотония), замедление сокращений сердца (брадикардия), изменение состава крови в сторону увеличения числа лейкоцитов и уменьшения эритроцитов, помутнение хрусталика глаза (катаракта).
Субъективные критерии отрицательного воздействия ЭМП – головные боли, повышенная утомляемость, раздражительность, нарушение сна, одышка, ухудшение зрения, повышение температуры тела.
Наряду с биологическим действием, электростатическое поле и электрическое поле промышленной частоты обусловливают возникновение разрядов между человеком и другим объектом, имеющим иной, чем у человека, потенциал. Зарегистрированные при этом токи не представляют особой опасности, но могут вызывать неприятные ощущения. В любом случае такого рода воздействия можно предотвратить путем простого заземления крупногабаритных (автобус, крыша деревянного здания и пр.) и протяженных (трубопровод, проволочная изгородь и т. п.) объектов, так как на них из-за большой емкости накапливается достаточный заряд и существенный потенциал, которые могут обусловить заметный разрядный ток.
В последнее время появляются публикации о возможном влиянии неинтенсивных магнитных полей на возникновение злокачественных заболеваний. В частности, ученые Швеции обнаружили у детей до 15 лет, проживающих около ЛЭП, что при магнитной индукции 0,2 мкТл они заболевают лейкемией в 2,7 раза чаще, чем в контрольной группе, удаленной от ЛЭП, и в 3,8 раза чаще, если индукция выше 0,3 мкТл, т. е. при напряженности магнитного поля около 0,24 А/м!
Существует большое количество гипотез, объясняющих биологическое действие магнитных полей. В основном они сводятся к индуктированию токов в живых тканях и непосредственному влиянию поля на клеточном уровне. В таблице 26 приведены значения напряженности постоянного и низкочастотного магнитного поля, при которой начинает проявляться тот или иной физический механизм при воздействии магнитных полей.
Относительно безвредными для человека в течение длительного времени следует признать МП, имеющие порядок геомагнитного поля и его аномалий, т. е. напряженности МП не более 0,15-0,2 кА/м. При более высоких напряженностях МП начинает проявляться реакция на уровне организма. Характерной чертой этих реакций является длительная задержка относительно начала действия МП, а также ярко выраженный кумулятивный эффект при длительном действии МП. В частности, эксперименты, проведенные на людях, показали, что человек начинает ощущать МП, если оно действует не менее 3-7 с. Это ощущение сохраняется некоторое время (около 10 с) и после окончания действия МП.
Таблица 26
Проявление физических механизмов в зависимости от напряженности магнитного поля
Физические механизмы действия магнитного поля, источники МП, биологические уровни | Напряженность МП, кА/м |
Нарушение пространственной ориентации биомолекул | |
Магнитогидротормозной эффект | |
Изменение электропроводности воды | |
ЭДС самоиндукции, соответствующая собственным биопотенциалам | |
Магнитные эффекты в химических реакциях | 8-80 |
Увеличение вязкости воды | |
ПДУ при 8-часовом рабочем дне для постоянного МП | |
Курская магнитная аномалия | 0,16 |
Геомагнитное поле | 0,025-0,04 |
Интересные данные получены проф. А. В. Сосуновым: постоянное магнитное поле напряженностью 48 кА/м стимулировало рост раковых клеток в тканевых культурах, а при напряженности160 кА/м большинство раковых клеток погибало.
В развитие сведений о воздействии магнитных полей приведем результаты экспериментов Института гигиены труда им. Ф. Ф. Эрисмана. Сотрудники этого института установили, что вода, обработанная магнитным полем в 160 кА/м не вызывает серьезных изменений в организме подопытных крыс. Когда же крысы начинали пить воду, обработанную более сильным магнитным полем (400 кА/м), то у них возникали предпатологические изменения в нервной и кровеносной системах, а также в самой крови. Все это указывает на неоднозначность реакций организма на воздействие ЭМП, прежде всего его магнитной составляющей, и предопределяет большую осторожность при использовании ЭМП, а также тщательность и серьезное обоснование при гигиеническом нормировании полей.
ПРИНЦИПЫ НОРМИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ
В настоящее время в качестве определяющего параметра при оценке влияния поля как электрического, так и магнитного частотой до 10–30 кГц принято использовать плотность индуктированного в организме электрического тока. Считается, что плотность тока проводимости j < 0,1 мкА/см2, индуктированного внешним полем, не влияет на работу мозга, так как импульсные биотоки, протекающие в мозгу, имеют большие значения. В таблице 27 представлены возможные эффекты в зависимости от плотности тока, наведенного переменным полем в теле человека.
Оценку опасности для здоровья человека выводят из связи между значением плотности тока, наведенного в тканях, и характеристиками ЭМП. Плотность тока, индуктированного магнитным полем, определяется из выражения:j = πRγ f В, где В – магнитная индукция, Тл, В = μ Н; f – частота, Гц; γ – удельная проводимость, См/м.
Для удельной проводимости мозга принимают γ = 0,2 См/м, для сердечной мышцы γ = 0,25 См/м. Если принять радиус R = 7,5 см для головы и 6 см для сердца, произведение γR получается одинаковым в обоих случаях. При таком подходе безопасная для здоровья магнитная индукция получается равной около 0,4 мТл при 50 или 60 Гц, что эквивалентно напряженности магнитного поля Н ≤ 300 А/м.
Плотность тока, индуцированного в теле человека электрическим полем, оценивают по формуле: j=kxfxE, с различными коэффициентами k для области мозга и сердца. Для ориентировочных расчетов, поскольку важно оценить порядок плотности тока j, принято k =3 х 10-3 См/Гц м.
В области частот от 30 до 100 кГц механизм воздействия полей через возбуждение нервных и мышечных клеток уступает место тепловому воздействию и в качестве определяющего фактора принимается удельная мощность поглощения. При этом считается в соответствии с различными международными предписаниями, что для энергии, поглощенной телом человека, достаточно безопасным пределом является 0,4 Вт/кг (в стандарте ФРГ – VDE 0848, часть 2). В диапазоне частот от 100 МГц до 3 ГГц следует учитывать резонансные эффекты в теле и в области головы, на что при нормировании должна быть сделана поправка.
Таблица 27