Механизм токсического действия тяжелых металлов
Всем известно, что загрязнение окружающей среды соединениями тяжелых металлов: ртути, свинца, кадмия, хрома, никеля и др. металлов – может привести к тяжелым отравлениям.
Механизм токсического действия таких соединений объясняется взаимодействием катионов тяжелых металлов (Мт) с бионеорганическими комплексами. Это можно записать в виде реакции:
МбL + Мт ↔ Мб + МтL
Где МбL – комплекс иона биогенного металла Мб (Fe, Zn, Cu, Co) с биоорганическим лигандом L (например порфирином); Мт – ион тяжелого металла.
Если устойчивость комплекса МтL больше, чем устойчивость МбL, происходит смещение равновесия вправо и в организме накапливаются соединения МтL, что приводит к нарушению нормальной работы организма.
Значение комплексных соединений в медицине.
Комплексообразование имеет большое значение для многих биологических процессов. В виде аквакомплексов находятся в крови, лимфе и тканевых жидкостях ионы щелочных и щелочноземельных металлов, выполняющих в организме важные и многообразные физиологические функции. Ионы d – элементов в результате высокой комплексообразующей способности находятся в организме исключительно в виде комплексов с белками и входят в состав гормонов, ферментов, витаминов и других жизненно важных соединений. Некоторые комплексные соединения обладают биологической активностью и применяются в качестве лекарственных препаратов - например витамин В12 , участвующий в процессах кроветворения, является комплексом кобальта.
Токсические свойства некоторых веществ обусловлены их высокой комплексообразующей способностью. Например, токсическое действие на организм цианидов и оксида углерода объясняется их способностью образовывать прочные комплексы с катионами железа. Цианиды блокируют атомы железа, входящие в состав дыхательного фермента цитохромоксидазы, в результате прекращается клеточное дыхание. Оксид углерода (СО) связывает железо гемоглобина, вследствие этого гемоглобин утрачивает способность осуществлять транспорт кислорода.
В медицинской практике при лечении многих заболеваний в качестве лекарственных препаратов используются соединения меди, серебра, цинка, кобальта, хрома, золота, платины, ртути и др.
Вопросы для самоконтроля
1. Основные положения и понятия координационной теории
2. Классификация комплексных соединений.
3. Комплексообразующая способностьs-р-иd- элементов. Её причины.
4. Природа химической связи в комплексных соединениях с позиций метода валентных связей.
5. Влияние природы комплексообразователя на распределение электронов в ионе - комплексообразователе. Внешнеорбитальные и внутриорбитальные комплексные соединения.
6. Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины).
7. Устойчивость комплексных соединений. Константа нестойкости комплексных соединений, её связь с константой устойчивости.
8. Конкуренция за лиганд или за комплексообразователь: изолированное и совмещенное равновесия замещения лигандов.
9. Общая константа совмещенного равновесия замещения лигандов. инертные и лабильные комплексы.
10. Физико – химические принципы транспорта кислорода гемоглобином.
11. Металло – лигандный гомеостаз и причины его нарушения.
12. Механизм токсического действия тяжелых металлов и мышьяка на основе теории жестких и мягких кислот и оснований (ЖМКО.
13. Термодинамические принципы хелатотерапии.
14. Механизм цитотоксического действия соединений платины.
15. Значение комплексных соединений
Упражнения
1. Вычислите заряды следующих комплексных ионов, образованных
Сr (III): а) [Cr(H2O)5Cl], б) [Cr(H2O)4Cl2 ], в) [Cr(H2O)2 (C2O4)2].
Дайте названия этих комплексных соединений.
2. Составьте комплексное соединение, если: а) комплексообразователь Zn2+, лиганды ОН-, координационное число (к.ч.) 4, внешнюю сферу подберите сами. Дайте название этому КС; б) комплексообразователь Аg+, лиганды NH3,
к.ч.= 2, внешнюю сферу подберите сами. Дайте название этому КС; в) комплексообразователь Fe+2, лиганды СN, к.ч. = 6, внешнюю сферу подберите сами. Дайте название этому КС. Напишите для всех комплексов первичную и вторичную диссоциацию, покажите выражение константы нестойкости комплексов.
3. Назовите комплексные соли: [Cu(NO3)4] (NO3)2, [Co(H2O)(NH3)4]Br2, [Co(NH3)5SO4]NO3, K4[Fe(CN)6], Na2[PdI4], K2[HgI4], K2[Pt(OH)5Cl].
4. Напишите формулы комплексных неэлектролитов: а) тетраамминофосфатхром, б) диаминодихлорплатина, в) триамминотрихлорокобальт, г) диамминотетрахлорплатина. В каждом из комплексов укажите степень окисления комплексообразователя
5. Составьте уравнения электролитической диссоциации солей: (NH4)2Fe(SO4)2, [Cu(NH3)4]SO4, Na3[Co(NO2)6].
6. Напишите выражение для константы нестойкости следующих комплексных ионов: [Cd(NH3)4]+2, [Co(NH3)6]+3, [AlF6]-3.
7. Константы нестойкости для некоторых комплексных ионов равны: а) 1·10-37, б) 8·10-16, в) 1·10-44. Какой из указанных ионов менее устойчив к диссоциации?
Лабораторные работы
Работа 1.Получение и cвойства комплексных соединений.
Приборы и реактивы: штатив с набором пробирок, растворы солей: CuSO4, KI, Bi(NO3)2, Zn(NO3)2, AgNO3, CrCl3, AlCl3, Al2(SO4)3, NiSO4, K3[Fe(CN)6], Na3[Co(NO2)6], K4[Fe(CN)6, растворы гидроксида аммония, гидроксида натрия, азотной и щавелевой кислот, раствор КАl(SO4)2, кристаллический CrCl3·6H2O, NH4CNS.
Опыт 1.Различие между простыми и комплексными ионами.
В одну пробирку поместите 3-4 капли раствора хлорида железа (111), в другую – 3-4 кап. К3[Fe(CN)6]. В обе пробирки добавьте 2-3 кап. роданида аммония (NH4CNS) или роданида калия (КCNS). Что наблюдаете? Напишите уравнения реакций и объясните данное явление.
FeCl3 + 6KCNS → K3[Fe(CN)6] + 3KC
цвет?
K3[Fe(CN)6] + KCNS → реакции нет, почему?
Опыт 2. Комплексные соединения в реакциях обмена
а) Поместите в одну пробирку 2-3 капли раствора К3[Fe(CN)6], в другую 2-3 капли раствора FeCl3. В обе пробирки добавьте по 2-3 капли FeSO4 Что происходит? Напишите уравнение реакции обмена.
Опыт 3.Образование комплексной соли меди при взаимодействии с раствором аммиака.
В пробирку внесите 10-15 капель раствора сульфата меди (ІІ) и по каплям добавьте 25% раствора ΝН4ОН. Наблюдайте растворение выпавшего вначале осадка основного сульфата меди и изменение цвета раствора при образовании комплексного сульфата тетраамин меди (ІІ).
2CuSO4 + 2NH4OH → Cu2(OH)2SO4↓ + (NH4)2SO4
Cu2(OH)2SO4 + 8NH4OH → [Cu(NH3)4(OH)2 + [Cu(NH3)4]SO4 + 8H2O
цвет?
Работа 2.Получение катионных комплексных соединений
Опыт 4
а) Комплексное основание никеля.
В пробирку внести 3-4 капли раствора сульфата никеля и такой же объём раствора гидроксида натрия. К осадку добавьте 5-6 капель 25% раствора гидроксида аммония. Что происходит? Сравните окраску ионов Ni+2 в растворе сульфата никеля с окраской полученного раствора. Напишите все уравнения реакций получения комплексного иона, если координационное число Ni+2 равно шести.
б) Образование комплексного иона серебра
к 3-4 каплям раствора нитрата серебра прибавьте 2-3 кали раствора НС1. что наблюдаете? К части полученного осадка прибавьте 10-12 кап. раствора аммиака. Что происходит? К полученному раствору добавьте раствор азотной кислоты до получения кислой среды. Какой эффект наблюдаете? Опишите все процессы в уравнениях реакций.
Работа 3. Получение анионных комплексных соединений
Опыт 5.Получение гидроксокомплексов цинка, хрома и алюминия.
В три пробирки поместите раздельно растворы солей цинка, хрома (ІІІ), алюминия и в каждую пробирку добавьте по каплям раствор гидроксида натрия. Наблюдайте вначале выпадение осадков гидроксидов, а затем их растворение в избытке щелочи. Напишите уравнения реакций, учитывая, что образуются растворимые гидроксокомплексы, содержащие ионы [Zn(OH)4]-2, [Cr(OH)4]-, [Al(OH)4]-.
Опыт 6.Получение тетраиодвисмута калия
В пробирку к 3-4 каплям раствора нитрата висмута прибавьте по каплям раствор иодида калия до выпадения осадка темно-бурого цвета иодида висмута. Растворите этот осадок, прибавив избыток раствора иодида калия. Напишите уравнения реакций образования комплекса висмута (ІІІ), если координационное число его равно 4. Определите заряд комплексного иона.
Опыт 7.Получение внутрикомплексного соединения оксалата железа (ІІІ).
В две пробирки внести по 5-7 капель раствора хлорида железа (ІІІ). Одну пробирку оставить для контроля. В другую пробирку добавить раствор гидроксида натрия до начала выпадения осадка. К полученному осадку прибавьте насыщенный раствор щавелевой кислоты. Наблюдается растворение осадка и обесцвечивание раствора. Проверьте присутствие ионов железа (ІІІ) в обоих пробирках, прибавлением раствора роданида калия. Во всех ли пробирках наблюдается образование окрашенного раствора? Напишите уравнения реакций в молекулярной и ионной формах, если формула комплексного иона железа имеет вид [Fe(C2O4)3]-3.
Опыт 8.Разрушение комплекса при разбавлении раствора.
Внести в пробирку 3 капли раствора нитрата серебра и добавить к нему раствор иодида калия по каплям до выпадения осадка, постоянно встряхивая пробирку. Выпавший вначале осадок растворяется. К полученному раствору добавьте 4-6 капель воды. что наблюдаете? Дайте объяснение и напишите уравнение реакций. Аналогичный опыт проделайте с раствором соли алюминия, получив вначале гидроксид алюминия.
Опыт 9.Сравнение устойчивости аквакомплексов меди.
в) В пробирку поместите небольшое количество безводного порошка сульфата меди и добавьте воды до половины пробирки. Раствор приобретает окраску за счет образования аквакомплекса меди. Составьте формулу этого комплекса и укажите составные части.
Полученный раствор разделите на 3 пробирки. Одну оставьте для контроля. Во вторую по каплям добавьте раствор NH4OH, встряхивая каждый раз пробирку для лучшего перемешивания ее содержимого. В третью пробирку добавьте небольшое количество сухого хлорида натрия. Отметьте изменение цвета в обоих пробирках, напишите уравнения соответствующих реакций.
Растворы во второй и третьей пробирках разбавьте водой. Что наблюдаете? Сделайте вывод об устойчивости аква-, амиачного и галогенидного комплексов меди.