Коррозионные и эрозионные повреждения трубок
Выбор материалов конденсаторных трубок определяется в основном качеством охлаждающей воды[2[. В конденсаторах поставки отечественных турбостроительных заводов установлены, как правило, трубки из медных сплавов: медно-цинковых (латуней), легированных для увеличения их стойкости против коррозии оловом, а в случаях возможности эрозионно-коррозионных повреждений алюминием и содержащих также небольшое количество мышьяка для снижения их склонности к обесцинкованию (латуни ЛО-70-1, ЛА-77-2, ЛОМш 70-1-0,05 и ЛАМш 77-2-0,05), и медно-никелевых, легированных железом и марганцем (сплавы MHЖ-5-1, МНЖ-Мц-5-1-0,8 или МНЖМц-30-1-1). Состав и механические свойства указанных сплавов определяются ГОСТ 21646-76, ГОСТ 10092-75 и ТУ 48-21-465-82 (за рубежом применяются также трубки из медно-никелевого сплава с 10 % никеля, нержавеющих сталей и титана). Толщина стенок трубок принимается 1 мм.
В латунных трубках коррозионные повреждения проявляются в форме общего обесцинкования, пробочного обесцинкования, коррозионного растрескивания, ударной коррозии и коррозионной усталости. Форма и скорость развития коррозионного процесса зависят от агрессивности охлаждающей воды, ее скорости в трубках, чистоты трубок и состояния металла.
При благоприятных условиях (пресные, слабоминерализованные, не загрязненные стоками воды, хорошо отожженные мягкие трубки) наблюдается лишь медленный процесс общего обесцинкования латунных трубок (образования с водяной стороны трубки постепенно углубляющегося слоя красной губчатой меди), приводящий к необходимости замены трубок вследствие утонения и уменьшения механической прочности их стенок по истечении 15 - 20 лет и более. Однако повышенная агрессивность охлаждающих вод, загрязнение трубок содержащимися в воде примесями, а также дефекты изготовления трубок приводят к их местному (пробочному) обесцинкованию или коррозионному растрескиванию, что существенно сокращает срок службы трубок.
При местном обесцинковании на внутренней поверхности латунных трубок образуются небольшие (диаметром до 3 - 5 мм) язвины и пробки губчатой меди, быстро проникающие вглубь стенки и образующие в результате выпадения пробок, сквозные свищи-отверстия. Растрескивание трубок происходит при наличии в них растягивающих напряжений, большей частью остаточных напряжений, не снятых из-за неудовлетворительного их отжига после изготовления (латунные трубки должны быть «мягкими»). При пробочном обесцинковании и коррозионном растрескивании выход трубок из строя может начаться уже через 3 - 5 лет после их установки, а необходимость замены трубного пучка конденсатора из-за большого числа заглушенных трубок и ускорившегося выхода их из строя может возникнуть по истечении 8 - 10 лет, а иногда и быстрее.
Поскольку мышьяк или применяющийся для той же цели фосфор увеличивает склонность латуней к растрескиванию, содержание этих веществ или сумма их содержаний (As + Р) не должны превышать 0,02 - 0,035 % и перед установкой трубок на место необходимо убедиться с помощью аммиачной пробы в том, что в них практически отсутствуют остаточные напряжения. Ртутная проба не пригодна для проверки отсутствия остаточных напряжений в латунных трубках вследствие ее недостаточной чувствительности (аммиачная проба позволяет обнаружить напряжения от 5 Н/мм2, а ртутная - лишь от 100 Н/мм2 и более). При наличии остаточных напряжений трубки могут быть иногда отожжены с помощью перегретого пара на электростанции [3].
При высокоминерализованных водах, главным образом морских, входные концы латунных трубок могут подвергаться ударной коррозии или эрозионно-корозионному разрушению, связанному с повреждением защитной пленки на поверхности металла под действием ударов, вызываемых кавитацией, и содержащихся в воде абразивных примесей (песка, золы). Легирование латуни алюминием повышает ее стойкость против эрозии, вследствие чего трубки из алюминиевой латуни нашли применение в основном на приморских электростанциях, где срок их службы составляет в среднем около 10 лет. Но при загрязненных стоками морских водах и содержании в воде сульфидов стойкость их недостаточна.
Для защиты входных концов латунных трубок от ударной коррозии в них вставляются втулки из пластмассы длиной 150 - 250 мм или на участок той же длины наносится покрытие из эпоксидной смолы или другого синтетического материала. Втулка или покрытие должны иметь плавное очертание на входе и сходящую на нет толщину по их длине, так как наличие уступа при переходе к металлу приводит к образованию очага коррозии последнего. При морских водах целесообразно также применение электрохимической (протекторной или катодной) защиты.
В последнее время в конденсаторах мощных паровых турбин электростанций, поставляемых отечественными заводами применяются в основном трубки из медно-никелевого сплава МНЖ-Мц 5-1-0,8 (мягкие), при высокоминерализованных и загрязненных морских водах - из сплава МНЖ-Мц 30-1-1.
Трубки из сплава МНЖ-Мц 5-1-0,8 применяются взамен латунных при пресных и чистых морских водах, не содержащих сульфидов и аммиака. Сплав с 30 % Ni хорошо противостоит действию аммиака, и трубки из этого сплава могут применяться в выходной зоне трубного пучка (воздухоохладительной секции), если при трубках из других медных сплавов в этой зоне наблюдается их аммиачная коррозия. Но этот сплав непригоден при кислых водах.
Трубки из медно-никелевых сплавов подвержены язвенной коррозии под отложениями, и даже сравнительно редкие локальные отложения могут приводить к образованию в них течей. При кислых водах или содержания в воде сульфидов они могут подвергаться пробочному обезникелеванию.
Трубки из нержавеющих сталей и титана, не применяющиеся пока в отечественных конденсаторах стационарных турбоустановок, здесь не рассматриваются.
Для предотвращения или замедления коррозии конденсаторных трубок из медных сплавов с водяной стороны наряду с выбором их материала, учитывающим свойства охлаждающей воды, и выполнением требований, предъявляемых к их изготовлению, транспортировке и хранению, весьма важным является поддержание в условиях эксплуатации достаточной чистоты внутренней поверхности трубок и осуществление в случае необходимости мероприятий, способствующих образованию на этой поверхности прочной и плотной защитной пленки.
Образованию на поверхности медных сплавов оксидной пленки, обладающей повышенными защитными свойствами, способствует содержание в воде гидратированных окислов железа. При этом на поверхности естественной оксидной пленки - слоя, состоящего в основном из окислов меди, образуется сцепленный с ним второй оксидный слой, представляющий собой гомогенный слой окиси железа. Поскольку окислов железа, попадающих в охлаждающую воду в результате коррозии стальных элементов водозаборных сооружений, обычно недостаточно, рекомендуется особенно при соленых (морских) и солоноватых водах дозирование в охлаждающую воду сульфата железа (FeSO4) или других соединений железа или же установка в передней водяной камере конденсатора железных анодов. Этот метод упрочнения защитной пленки пригоден как для новых, так и для проработавших уже трубок.
При непрерывном вводе сульфата железа исходят из дозы Fe++, составляющей 0,01 - 0,03 мг Fe/кг (или 0,05 - 0,15 кг FeSO4 · 7H2O/кг), при периодическом вводе дозу увеличивают, например, при ежесуточном дозировании в течение 1 ч до 1 мг Fe/кг (или 5 мг FeSO4 · 7H2O/кг). Дозирование сульфата железа рекомендуется учащать в первый период работы новых трубок и после перерывов в работе конденсатора с опорожнением его от воды, так как при высушивании трубок защитная пленка может растрескиваться и частично отслаиваться. Концентрированный раствор сульфата железа должен вводиться в охлаждающую воду возможно ближе к конденсатору во избежание преждевременного его окисления и выпадения соединений железа в виде хлопьев. Должно обеспечиваться хорошее перемешивание вводимого раствора с основной массой воды.
Образованию стабильной защитной пленки на поверхности трубок при дозировании сульфата железа может препятствовать значительное содержание в воде абразивных примесей (песка, золы).
Повреждения трубок, вызываемые эрозией или коррозией их с паровой стороны, наблюдаются значительно реже. Они могут вызываться эрозией в первых двух рядах трубного пучка со стороны входа в него пара, содержащего капельную влагу, при значительной скорости последнего («каплеударная» эрозия) или в местах ввода в конденсатор горячих дренажей и аммиачной коррозией трубок на стороне выхода паровоздушной смеси из воздухоохладительной секции трубного пучка, где концентрация газов (аммиака, кислорода и двуокиси углерода) являются наиболее высокой.
Поскольку скорость пара на входе в трубный пучок ограничивается в отечественных конденсаторах по соображениям, связанным с улучшением их теплотехнических показателей, значительная эрозия трубок в первых рядах трубного пучка в них, как правило, не наблюдается. Локальная эрозия возможна при большой неоднородности распределения скоростей пара, поступающего в трубный пучок, в местах повышенных его скоростей. Образование вследствие этого неплотностей может быть избегнуто путем установки в периферийных рядах трубок с большей толщиной стенки (до 1,5 - 2 мм вместо обычной толщины 1 мм) или изготовленных из более стойкого к эрозии материала.
Аммиачная коррозия трубок из латуни или медно-никелевого сплава, содержащего 5 % Ni с паровой стороны в зоне выхода паровоздушной смеси из трубного пучка, может возникать при аммиачно-гидразинной обработке питательной воды и продолжительной работе турбоагрегата на режимах, при которых концентрация газов (аммиака, кислорода и двуокиси углерода) в удаляемой из конденсатора парогазовой смеси является сильно повышенной (при частичных нагрузках, значительных присосах воздуха и низких температурах охлаждающей воды). Она может быть устранена путем установки в воздухоохладительной секции пучка трубок из материала, стойкого к аммиачной коррозии (например, медно-никелевого сплава с 30 % Ni); или орошения трубок воздухоохладительной секции конденсатом из основного трубного пучка.
Для обнаружения коррозионных или эрозионно-коррозионных повреждений трубок на более ранней стадии, до начала быстро нарастающего выхода их из строя из-за образования сквозных отверстий, следует периодически осуществлять контроль за состоянием трубок, особенно со стороны охлаждающей воды. Контроль за состоянием трубок может осуществляться путем:
- визуального (при длине трубок менее 8 м) или визуально-оптического с помощью эндоскопов) осмотра внутренней поверхности трубок;
- выемки из конденсатора образцов трубок для проверки наличия, характера и размеров локальных повреждений с обеих сторон стенки и ее толщины, контроля за состоянием защитной пленки на внутренней поверхности;
- применения метода вихревых токов (токовихревого прибора с внутренним датчиком-зондом), позволяющего выявить повреждения трубок с внутренней и наружной стороны, а также производственные дефекты, не обнаруженные при приемке трубок (раковины, посторонние включения и др.).