Элементы химической термодинамики и кинетики

ЗАНЯТИЕ №2

ЭЛЕМЕНТЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ И КИНЕТИКИ

Термодинамические системы: определение, классификация систем (изолированные, закрытые, открытые) и процессов (изотермические, изобарные, изохорные). Стандартное состояние.

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии.

Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д., устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем:

I. По характеру обмена веществом и энергией с окружающей средой:

1. Изолированная система – не обменивается со средой ни веществом, ни энергией (Δm = 0; ΔE = 0) - термос.

2. Закрытая система – не обменивается со средой веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой, как веществом, так и энергией (человеческое тело).

II. По агрегатному состоянию:

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход - превращения фаз (таяние льда, кипение воды).

Термодинамический процесс - переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Классификация термодинамических процессов:

1.Изотермический - постоянная температура – T = const

2.Изобарный - постоянное давление – p = const

3.Изохорный - постоянный объем – V = const

Стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы - это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа.

Для беспримесной фазы, смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора - это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура, хотя часто говорят о стандартной температуре, которая равна 25 °C (298,15 К).

Основные понятия термодинамики: внутренняя энергия, работа, теплота.

Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и. д., т. е. все виды энергии кроме кинетической и потенциальной энергии системы в целом.

Нельзя определить величину внутренней энергии какой-либо системы, но можно определить изменение внутренней энергии ΔU, происходящее в том или ином процессе при переходе системы из одного состояния (с энергией U1) в другое (с энергией U2):

ΔU= U2- U1

ΔU зависит от вида и количества рассматриваемого вещества и условий его существования.

Суммарная внутренняя энергия продуктов реакции отличается от суммарной внутренней энергии исходных веществ, т.к. в ходе реакции происходит перестройка электронных оболочек атомов взаимодействующих молекул.

Энергия может передаваться от одной системы к другой или от одной части системы к другой в форме теплоты или в форме работы.

Теплота (Q) – форма передачи энергии путем хаотического, неупорядоченного движения частиц.

Работа (А) – форма передачи энергии путем упорядоченного перемещения частиц под действием каких-либо сил.

Единицей измерения работы, теплоты и внутренней энергии в системе СИ служит джоуль (Дж). 1 джоуль – это работа силы в 1 ньютон на расстоянии 1 м (1 Дж = 1 Н×м = 1 кг×м22). В старой химической литературе широко использовалась единица количества теплоты и энергии калория (кал). 1 Калория – это такое количество теплоты, которое необходимо для нагревания 1 г воды на 1°C. 1 Кал = 4,184 Дж≈4,2 Дж. Теплоты химических реакций удобнее выражать в килоджоулях или килокалориях: 1 кДж = 1000 Дж, 1 ккал = 1000 кал.

3. Первое начало термодинамики. Энтальпия. Стандартная энтальпия образования вещества. Стандартная энтальпия сгорания вещества. Стандартная энтальпия реакции.

Мерой внутренней энергии хаотического теплового (Броун) движения частиц в теле служит температура. Если тело А, вступая в контакт с телом В, отдает ему теплоту, то тело А имеет более высокую температуру, чем тело В. В тоже время нулевое начало термодинамики утверждает, что если тело А находится в тепловом равновесии (имеет одинаковую температуру) с телом В и телом С, то температура тел В и С также одинакова. Это начало лежит в основе измерения температуры при помощи термометра. При тепловом равновесии дальнейший обмен тепловой энергией невозможен.

Первое начало термодинамики, или закон сохранения энергии, гласит, что энергия не может возникать из ничего и исчезать, а только переходит из одной формы в другую. Например, внутренняя энергия, содержащаяся в веществе, может превращаться в тепловую, световую (пламя), электрическую (химический аккумулятор) и т.д.

Например, сообщим системе некоторое количество тепловой энергии Q, которая расходуется на совершение работы A и на изменение состояния внутренней энергии системы ΔU:

Q = A + ΔU

Теплота, выделяемая система, и теплота, поглощаемая ею, имеют противоположные знаки. Если система поглощает теплоту в данном процессе, то Q положительна, если выделяет– отрицательна. Работа (А) положительна, если она совершается системой над окружающей средой; если же работа совершается над системой, то А отрицательна.

Энтальпия: функция состояния системы, приращение которой равно теплоте, полученной системой в изобарном процессе.

Н = U + pV

Тепловой эффект реакции, протекающей в изобарическом режиме, равен разности между суммой энтальпий продуктов реакции и суммой энтальпий исходных веществ.

Qр=Нпрод – Нисх = ΔН

Для экзотермической реакции ΔН<0, а для эндотермической реакции ΔН >0.

Стандартная энтальпия образования вещества (ΔH0обр) – тепловой эффект реакции образования 1 моль вещества из простых веществ, при условии, что все участники реакции находятся в стандартном состоянии.

Стандартная энтальпия сгорания вещества (ΔH0сгор) – тепловой эффект реакции окисления (сгорания) 1 моля вещества достаточным количеством кислорода с образованием обычных продуктов полного окисления при стандартных условиях.

ΔH0сгор вещества, содержащего С, Н, О и N, - тепловой эффект реакции окисления 1 моля этого вещества кислородом с образованием СО2, жидкой Н2О и N2.

Калорийность продуктов питания – суммарное количество энергии, выделяющееся при полном окислении 1 г продукта питания (определяется в калориметре). Калорийность продуктов питания: углеводы – 4 ккал/г, белки – 4 ккал/г, жиры – 9 ккал/г. Зная эти величины и %-е содержание белков, жиров и углеводов в каком-либо продукте питания, можно рассчитать его калорийность, что является важным при составлении диет при разных заболеваниях.

Стандартная энтальпия реакции - это разность между суммой энтальпий образования продуктов реакции и суммой энтальпий образования реагентов с учетом стехиометрических количеств веществ

ΔH = ∑(nΔH)продукты - ∑(nΔH)реагенты

Для некоторой реакции

nAA + nBB = nCC + nDD

стандартная энтальпия реакции равна:

ΔH°298 = (nCΔH°298(С) + nDΔH°298(D)) - (nAΔH°298(A) + nBΔH°298(B))

Пример. Стандартная энтальпия следующей реакции:

4NH3(г) + 5O2(г) = 4NO(г) + 6H2O(г) ΔH°298 = (nNO·ΔH°298(NO) + nH2O·ΔH°298(H2O)) - (nNH3·ΔH°298(NH3) + nO2·ΔH°298(O2)) = = (4·(+91) + 6·(-242)) - (4·(-46) + 5·(0)) = -904 кДж

Следствия из закона Гесса

1) Тепловой эффект кругового процесса равен нулю. Круговой процесс - система, выйдя из начального состояния, в него же и возвращается.

ΔH1 + ΔH2 - ΔH3 = 0

2) Тепловой эффект реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования начальных (исходных) веществ.

ΔH0х.р. = ΣΔH0обр. прод. – ΣΔH0обр. исх.

3) Тепловой эффект реакции равен сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания конечных продуктов.

ΔH0х.р. = ΣΔH0сгор. исх. – ΣΔH0сгор. прод.

Примеры экзергонических и эндергонических процессов, протекающих в организме. Принцип энергетического сопряжения

Экзергонические реакции – G<0 и системой совершается работа (окисление глюкозы):

С6Н12О6 + 6 О2 → 6СО2 + 6Н2О, ΔG= - 68600 кал/мол

Эндергонические – G>0 и над системой совершается работа:

АДФ+Ф ↔ АТФ, ΔG= +8400 кал/мол

Принципы сопряжения:

1. Эндергоническая реакция осуществляется совместно и одновременно с экзергонической.

2. Абсолютное значение изменения свободной энергии для экзергонической реакции должно быть больше, чем для эндергонической.

3. Экзергоническая и эндергоническая реакция должны иметь общий промежуточный продукт.

Глюкоза + Ф → глюкоза-6-фосфат + Н2О, ΔG= 3 ккал/моль

АТФ + Н2О → АДФ + Ф, ΔG= - 7,3 ккал/моль

Σ: Глюкоза + АТФ → глюкоза-6-фосфат + АДФ, ΔG= -4,3 ккал/моль

Благодаря энергетическому сопряжению возможно взаимопревращение одних форм работы и энергии в другие. Например, в батарейке карманного фонарика экзергоническая химическая реакция генерирует электрическое поле, которое используется для эндергонического процесса получения световой энергии. В мышцах химическая энергия трансформируется в механическую работу и тепловую энергию.

Закон действия масс

Необходимым условием химического взаимодействия между частицами (молекулами, ионами) исходных веществ является их столкновение друг с другом. Число столкновений тем больше, чем выше концентрация каждого из исходных веществ или чем больше произведение концентрации реагирующих веществ.

Зависимость скорости реакции от концентраций реагирующих веществ описывается законом действия масс, открытым Н.Н. Беке­товым, К. Гульдбергом и П. Вааге в 1865—1867 гг.:

при постоянной температуре скорость химической реакции про­порциональна произведению концентраций реагирующих веществ.

В общем виде для гомогенной реакции аА+ вВ → сАВ

V = k [A]m[B]n = kCAmCBn,

где k — коэффициент пропорциональности, который называется константой скорости реакции; СА, СВ — молярные концентрации реагирующих веществ; т — порядок реакции по веществу А; n — по­рядок реакции по веществу В; т + n — общий порядок реакции; k = V, если [А] = [В] = 1 моль/л.

Константа скорости реакции k — это скорость химической реакции при условии, что концентрации реагирующих веществ равны 1 моль/л.

Величина константы скорости реакции зависит от природы ре­агирующих веществ, температуры, наличия катализаторов и не за­висит от концентрации веществ.

Закон действия масс непосредственно справедлив для простых реакций. Если реакции сложные и представляют собой совокуп­ность процессов, закон может быть применен к любому из них в отдельности.

В случае гетерогенных реакций в уравнение закона действия масс входят концентрации только веществ, находящихся в газовой фазе или в растворе.

Например: S (т) + O2 (г) → SO2 (г);

V = k [O2]m Математическое выражение закона действующих масс называ­ют кинетическим уравнением реакции.

Энергия активации.

Значительное возрастание скорости реакции при повышении температуры нельзя объяснить только увеличением числа столкно­вений между частицами реагирующих веществ, так как, в соответ­ствии с кинетической теорией газов, с возрастанием температуры количество столкновений увеличивается в незначительной степени. Увеличение скорости реакции с повышением температуры объяс­няется тем, что химическая реакция происходит не при любом столк­новении частичек реагирующих веществ, а только при встрече ак­тивных частиц, обладающих в момент столкновения необходимым избытком энергии.

Энергия, необходимая для превращения неактивных частичек в ак­тивные, называется энергией активации (Eа).

Энергия активации – избыточная, по сравнению со средним значе­нием, энергия, необходимая для вступления реагирующих веществ в реакцию при их столкновении.

Энергию активации измеряют в килоджоулях на моль (кДж/моль). Обычно Е составляет от 40 до 200 кДж/моль.

Энергетическая диаграмма экзотермической и эндотермической реакции представлена на рис. 3. Для любого химического процесса можно выделить начальное, промежуточное и конечное состояния. На вершине энергетического барьера реагенты находятся в промежуточном состоянии, которое называется активированным комплексом, или переходным состоянием. Разность между энергией активированного комплекса и начальной энергией реагентов равна Еа, а разность между энергией продуктов реакции и исходных веществ (реагентов) - ΔН, тепловому эффекту реакции. Энергия активации, в отличие от ΔН, всегда величина положительная. Для экзотермической реакции (рис. 3, а) продукты расположены на более низком энергетическом уровне, чем реагенты (Еа < ΔН).

элементы химической термодинамики и кинетики - student2.ru элементы химической термодинамики и кинетики - student2.ru

 
 
Активированный комплекс

Рис. 3. Энергетические диаграммы реакций: А – экзотермической Б - эндотермической
А Б

Еа является основным фактором, определяющим скорость реакции: если Еа > 120 кДж/моль (выше энергетический барьер, меньше активных частиц в системе), реакция идет медленно; и наоборот, если Еа < 40 кДж/моль, реакция осуществляется с большой скоростью.

Для реакций с участием сложных биомолекул следует учитывать тот факт, что в активированном комплексе, образовавшемся при соударении частиц, молекулы должны быть ориентированы в пространстве определенным образом, так как трансформации подвергается лишь реагирующий участок молекулы, небольшой по от­ношению к ее размеру.

Если известны константы скорости k1 и k2 при температурах Т1 и Т2, можно рассчитать значение Еа.

В биохимических процессах энергия активации в 2-3 раза мень­ше, чем в неорганических. Вместе с тем Еа реакции с участием чу­жеродных веществ, ксенобиотиков, значительно превышает Еа обыч­ных биохимических процессов. Этот факт является естественной биозащитой системы от влияния чужеродных веществ, т. е. есте­ственные для организма реакции происходят в благоприятных усло­виях с низкой Еа, а для чужеродных реакций Еа высокая. Это явля­ется генным барьером, характеризующим одну из главных особен­ностей протекания биохимических процессов.

ЗАНЯТИЕ №2

ЭЛЕМЕНТЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ И КИНЕТИКИ

Наши рекомендации