Общие методы получения любых кислот
Практически все кислоты могут быть получены одним из способов, приведенных ниже.
1°. Взаимодействие между солью и кислотой приводит к образованию новой соли и новой кислоты, если между солью и кислотой не протекает окислительо-восстановительная реакция, например:
а) Вытеснение слабых кислот сильными.
NaCN + HCl NaCl + HCN .
б) Вытеснение летучей кислоты из ее солей менее летучей кислотой. Для этих целей обычно используют серную кислоту, т. к. она обладает целым рядом необходимых для этого свойств:
– кислота сильная
– термически устойчивая
– мало летучая [tкип.(H2SO4) = 296,5°C]^
+ = NaHSO4 + HCl
NaHSO4 + NaCl Na2SO4 + HCl .
Серная кислота способна вытеснять из солей более сильные кислоты, даже такую как хлорную — самую сильную из всех кислородных кислот.
KClO4 + H2SO4 KHSO4 + HClO4.
Однако, используя серную кислоту для этих целей необходимо учитывать и другие свойства этой кислоты, ограничивающие ее применение. Концентрированная серная кислота является достаточно сильным окислителем, поэтому ее нельзя использовать для получения таких кислот как HBr, HI, H2S, кислотообразующие элементы которых она может перевести в другие степени окисления, например:
8 + = 4I2 + H2S + 4 H2O.
В этом случае можно использовать нагревание соли с фосфорной кислотой, которая не проявляет окислительные свойства:
NaBr + H3PO4 NaH2PO4 + HBr.
Кроме того, концентрированная серная кислота обладает достаточно сильными водоотнимающими свойствами, что приводит к разложению кислоты, вытесняемой из соли, за счет диспропорционирования центрального атома:
3 KClO3 + 3 H2SO4 = 3 KHSO4 + 2 ClO2 + HClO4 + H2O,
либо к образованию неустойчивого кислотного оксида, разложение которого может происходить со взрывом:
2 KMnO4 + H2SO4 = K2SO4 + H2O + | Mn2O7 ¯ | |||
MnO2 + O2 | ||||
в) Образование одного нерастворимого продукта:
AgNO3 + HCl = AgCl ¯ + HNO3
Ba(H2PO4)2 + H2SO4 = BaSO4 ¯ + 2 H3PO4
Na2SiO3 + 2 HCl + (x-1) × H2O= 2 NaCl + SiO2 × x H2O ¯.
2°. Взаимодействие солей, гидролиз которых идет практически до конца, с водой:
Al2S3 + 6 H2O = 2 Al(OH)3 ¯ + 3 H2S .
3°. Гидролиз галогенангидридов кислот:
PBr5 + H2O = POBr3 + 2 HBr
POBr3 + 3 H2O = H3PO4 + 3 HBr
SO2Cl2 хлорид сульфурила | + | 2 H2O горячая | = H2SO4 + 2 HCl |
SOCl2 хлорид тионила | + H2O = SO2 + 2 HCl |
COCl2 фосген | + | H2O горячая | CO2 + 2 HCl . |
4°. Окисление неметаллов азотной кислотой:
3 P + 5 HNO3 + 2 H2O = 3 H3PO4 + 5 NO
S + 2 HNO3 конц. H2SO4 + 2 NO.
5°. Окисление кислотообразующего элемента до более высокой степени окисления:
H3PO3 + H2O2 = H3PO4 + H2O
3 H2SO4 + 5 H3PO3 + 2 KMnO4 = 5 H3PO4 + 2 MnSO4 + K2SO4 + 3 H2O
H2SO3 + H2O2 = H2SO4 + H2O
HNO2 + Br2 + H2O = HNO3 + 2 HBr.
Химические свойства кислот
1°. Рассмотрим характерные свойства кислот, не являющихся окислителями.
1°.1. Реакции обмена
а) Взаимодействие с основаниями (как с растворимыми, так и с нерастворимыми) — реакция нейтрализации:
NaOH + HCl = NaCl + H2O
Cu(OH)2 ¯ + H2SO4 = CuSO4 раствор + 2 H2O.
б) Взаимодействие с солями
BaCl2 + H2SO4 = BaSO4 ¯ + 2HCl
Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O.
При составлении уравнений реакций обмена необходимо учитывать условия протекания этих реакций до конца:
а) образование хотя бы одного нерастворимого соединения
б) выделение газа
в) образование слабого электролита ( например, воды)
1°.2. Реакции с основными и амфотерными оксидами:
а) FeO + H2SO4 = FeSO4 + H2O
б) ZnO + 2 HNO3 = Zn(NO3)2 + H2O.
1°.3. Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют водород из кислот, не являющихся сильными окислителями (HCl, H2SO4 (разб.)):
Zn + H2SO4 (разб.) = ZnSO4 + H2
Mg + 2 HCl = MgCl2 + H2.
Если в результате реакции образуется нерастворимая соль или оксид, то металл пассивируется и его растворение не происходит:
Pb + H2SO4 ¹
(PbSO4 — нерастворим в воде)
Al + HNO3 (конц.) ¹
(поверхность металла покрывается оксидной пленкой).
1°.4. Термически неустойчивые кислоты, например, угольная, сернистая, разлагаются при комнатной температуре или при легком нагревании:
H2CO3 = CO2 + H2O
H2SO3 SO2 + H2O
SiO2 × x H2O SiO2 + x H2O .
1°.5. Реакции с изменением степени окисления кислотообразующего элемента.
4 + MnO2 = MnCl2 + + 2 H2O
+ H2O2 = + H2O
2 + Cu = CuSO4 + + 2 H2O
2 H2S + H2SO3 = 3 S ¯ + 3 H2O.
По этому принципу кислоты можно разделить на кислоты-восстановители и кислоты-окислители.
2°. Свойства кислот-окислителей.
2°.1. Реакции обмена. Кислоты-окислители реагируют с оксидами, гидроксидами и солями, в состав которых входят катионы металлов не проявляющих переменные степени окисления также как и кислоты, не являющиеся окислителями (см. 1°.1 и 1°.2 в п. 2.4).
2°.2. Реакции с гидроксидами, оксидами и солями.
а) Если металл, образующий основание, может находиться в нескольких степенях окисления, а кислота проявляет окислительные свойства, то эти реакции могут протекать с изменением степеней окисления элементов, например:
Fe(OH)2 + 4 HNO3 (конц.) = Fe(NO3)3 + NO2 + 3 H2O.
б) Аналогично ведут себя в реакциях с кислотами-окислителями и оксиды металлов, проявляющих переменные степени окисления:
2 FeO + 4 H2SO4 (конц.) = Fe2(SO4)3 + SO2 + 4 H2O.
в) При реакциях кислот-окислителей с солями, содержащими анион, проявляющий восстановительные свойства, происходит его окисление:
3 Na2S + 8 HNO3 (разб.) = 6 NaNO3 + 3 S ¯ + 2 NO + 4 H2O
8 NaI + 5 H2SO4 (конц.) = 4 I2¯+ H2S + 4 Na2SO4 + 4 H2O.
2°.3. Взаимодействие с металлами.
Азотная и концентрированная серная кислоты являются сильными окислителями и могут взаимодействовать с металлами, стоящими в ряду напряжений как до, так и после водорода, но водород в этом случае не выделяется, а образуются продукты восстановления азота и серы, причем, состав продуктов зависит от активности металла, концентрации кислоты и температуры:
Cu + 4 HNO3 (конц.) = Cu(NO3)2 + 2 NO2 + 2 H2O
3 Cu + 8 HNO3 (разб.) = 3 Сu(NO3)2 + 2 NO + 4 H2O
5 Co + 12 HNO3 (оч.разб.) = 5 Co(NO3)2 + N2 + 6 H2O
4 Zn + 10 HNO3 (оч.разб.) = 4 Zn(NO3)2 + NH4NO3 + 3 H2O.
С разбавленной серной кислотой медь не взаимодействует, но реагирует с концентрированной серной кислотой, однако водород при этом не выделяется:
Cu + 2 H2SO4 (конц.) = CuSO4 + SO2 +2 H2O.
Некоторые металлы, стоящие в ряду напряжений до водорода, например, Fe, Al, Cr, эти кислоты пассивируют за счет образования на поверхности металла оксидной пленки нерастворимой в концентрированных кислотах при обычных условиях и поэтому указанные металлы не взаимодействуют с концентрированными серной и азотной кислотами.
2°.4. Реакции с неметаллами. Концентрированные азотная и серная кислоты взаимодействуют с неметаллами: серой, фосфором, углеродом:
S + 2 HNO3 (конц.) H2SO4 + 2 NO
S + 2 H2SO4 (конц.) 3 SO2 + 2 H2O
3 P + 5 HNO3 (конц.) + 2 H2O 3 H3PO4 + 5 NO
C + 2 H2SO4 (конц.) CO2 + 2 SO2 + 2 H2O.
2°.5.Кислоты, образованные переходными металлами в высших степенях окисления, например, хромовая [H2CrO4], марганцовая [HMnO4], являются сильными окислителями.
2 H2CrO4 + 3 SO2 = Cr2(SO4)3 + 2 H2O.
Кислоты, в которых кислотообразующий элемент находится в промежуточной степени окисления могут проявлять как окислительные, так восстановительные свойства.
H2SO3 + 2 H2S = 3 S ¯ + 3 H2O (H2SO3 — окислитель)
H2SO3 + NO2 = H2SO4 + NO (H2SO3 — восстановитель).
Основания
В этом разделе будут рассмотрены только неорганические основания с позиции электролитической теории.
Классификация оснований
Основания могут быть классифицированы по следующим свойствам.
1°. Кислотность основания — число групп OH- способных обмениваться на кислотный остаток. Например, NaOH — однокислотное основание, Ca(OH)2 — двухкислотное основание. По этому признаку основания бывают одно-, двух- и т. д. кислотными. Многокислотные основания диссоциируют ступенчато и могут образовывать несколько рядов солей, например, (MgOH)2CO3 — гидроксокарбонат (основной карбонат) магния; MgCO3 — карбонат (средний карбонат) магния.
2°. Растворимость. Гидроксиды щелочных металлов, металлов главной подгруппы второй группы, начиная с кальция, гидроксид таллия (I) [TlOH] и гидроксид аммония растворимы в воде. Гидроксиды других металлов в воде практически нерастворимы.
3°. Сила оснований, также как и других электролитов, определяется степенью диссоциации (или констанотой диссоциации). Сильными основаниями являются гидроксиды щелочных и щелочноземельных металлов. Сильные, растворимые в воде основания называются щелочами.
4°. Термическая устойчивость оснований. При нагревании большинство оснований разлагаются на оксид металла и воду. Устойчивыми являются гидроксиды щелочных металлов, начиная с натрия, они плавятся без разложения. Гидроксиды лития, стронция, бария и радия разлагаются при температуре несколько выше температуры плавления, гидроксиды остальных металлов разлагаются до плавления.
5°. По отношению к кислотам и щелочам гидроксиды металлов можно разделить на основные и амфотерные. К основным гидроксидам относятся гидроксиды, растворяющиеся только в кислотах и не реагирующие со щелочами, к амфотерным — гидроксиды, растворяющиеся как в кислотах, так и в щелочах.
Основными являются гидроксиды щелочных и щелочноземельных металлов, а также гидроксид магния и гидроксиды переходных металлов в низших степенях окисления, например, Cr(OH)2 , Mn(OH)2 и др.
Амфотерными являются гидроксиды Be(OH)2 , Zn(OH)2 , Al(OH)3 , Sn(OH)2 , гидроксиды переходных металлов в промежуточных степенях окисления, например, Cr(OH)3 , Fe(OH)3 .
Способы получения оснований
Основания могут быть получены одним из следующих способов.
1°. Взаимодействием щелочных и щелочноземельных металлов с водой:
2 Li + 2 H2O = 2 LiOH + H2
Sr + 2 H2O = Sr(OH)2 + H2.
Этим же способом может быть получен гидроксид аммония:
NH3 + H2O = NH3×H2O « + OH –.
В отличие от предыдущих примеров эта реакция протекает без изменения степеней окисления.
Другие металлы, стоящие в ряду электродных потенциалов до водорода, также могут реагировать с водой, но эти реакции протекают при высоких температурах и обратимы. При этом образуются не гидроксиды металлов, а оксиды, т. к. гидроксиды при этих температурах термически неустойчивы, например,
Fe + H2O « FeO + H2 (при t > 570°C).
2°. Растворением оксидов и пероксидов щелочных и щелочноземельных металлов в воде:
CaO + H2O = Ca(OH)2¯
Na2O2 + 2 H2O = 2 NaOH + H2O2.
Оксиды других металлов с водой не взаимодействуют.
3°. Гидролизом солей, у которых он протекает до конца:
Al2S3 + 6 H2O = 2 Al(OH)3¯ + 3 H2S .
4°. Смешиванием водных растворов солей, взаимно усиливающих гидролиз:
2 AlCl3 + 3 Na2CO3 + 3 H2O = 2 Al(OH)3¯ + 6 NaCl + 3 CO2.
5°. Разложением некоторых бинарных соединений металл-неметалл (гидридов, нитридов, фосфидов и др.) водой, например:
Li3N + 3 H2O = 3 LiOH + NH3
NaH + H2O = NaOH + H2
Ca3P2 + 6 H2O = 3 Ca(OH)2 + 2 PH3
Mg2Si + 4 H2O = 2 Mg(OH)2¯ + SiH4.
6°. Электролизом водных растворов хлоридов щелочных и щелочноземельных металлов:
2 NaCl + 2 H2O 2 NaOH + Cl2 + H2.
Для получения гидроксидов этим способом необходимо разделить катодное и анодное пространства, иначе будет происходить взаимодействие хлора со щелочью с образованием других продуктов.
7°. Важнейшим способом получения слабых, нерастворимых в воде оснований является осаждение их из растворов солей щелочами или раствором аммиака
MgSO4 + 2 KOH = Mg(OH)2¯ + K2SO4
AlCl3 + 3 NH4OH = Al(OH)3¯ + 3 NH4Cl.
При осаждении амфотерных гидроксидов щелочами полноту осаждения можно достичь только при смешении строго эквимолярных количеств соли и щелочи. Поэтому для осаждения амфотерных гидроксидов используют раствор аммиака в воде. Аммиаком нельзя осаждать гидроксиды тех металлов, которые образуют с ним комплексные катионы.
Гидроксид аммония не может быть получен таким способом, т. к. повышение концентрации анионов OH – приводит к уменьшению растворимости аммиака в воде и выделению его из раствора в виде газа:
NH4Cl + NaOH = NH3 + H2O + NaCl.
Этот же способ применим и для получения растворимых в воде оснований:
Ca(OH)2 + Na2CO3 « 2 NaOH + CaCO3¯ (каустизация соды).
Сдвиг равновесия в сторону образования NaOH достигается за счет образования CaCO3, обладающего меньшей растворимостью, чем Ca(OH)2.
Для большего смещения равновесия в сторону образования гидроксида щелочного металла используют гидроксид бария и сульфат соответствующего щелочного металла:
Ba(OH)2 + Cs2SO4 = BaSO4¯ + 2 CsOH.
8°. Окислением катиона, находящегося в низшей степени окисления, до высшей:
4 Fe(OH)2 ¯ + O2 + 2 H2O = 4 Fe(OH)3 ¯.