Закономерности изменения свойств оксидов
Увеличение степени окисления элемента и уменьшение радиуса его иона (при этом происходит уменьшение эффективного отрицательного заряда на атоме кислорода – dО) делают оксид более кислотным. Это и объясняет закономерное изменение свойств оксидов от основных к амфотерным и далее к кислотным.
а) В одном периоде при увеличении порядкового номера происходит усиление кислотных свойств оксидов и увеличение силы соответствующих им кислот.
Na2O основный оксид, сильное основание | MgO основный оксид, слабое основание | Al2O3 амфотерный оксид, амфотерный гидроксид | SiO2 кислотный оксид, очень слабая кислота | P4O10 кислотный оксид, кислота средней силы | SO3 кислотный оксид, сильная кислота | Cl2O7 кислотный оксид, очень сильная кислота |
Таблица 2
Зависимость кислотно-основных свойств оксидов
от эффективного заряда на атоме кислорода
Оксид | Na2O | MgO | Al2O3 | SiO2 | P4O1023 | SO3 | Cl2O7 |
Эффективный заряд, dO | – 0,81 | – 0,42 | – 0,31 | – 0,23 | – 0,13 | – 0,06 | – 0,01 |
Кислотно-основные свойства оксида | Основный | Основный | Амфотерный | Кислотный |
б) В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление основных свойств оксидов:
BeO амфотерный | MgO основный | CaO основный | SrO основный | BaO основный | RaO основный |
увеличение силы соответствующих оснований |
в) При повышении степени окисления элемента усиливаются кислотные свойства оксида и ослабевают основные:
Таблица 3
Зависимость кислотно-основных свойств
от степени окисления металлов
основный оксид | амфотерный оксид | – | кислотный оксид | – |
основный оксид | амфотерный оксид | – | – | – |
основный оксид | амфотерный оксид с преобладанием основных свойств | амфотерный оксид с преобладанием кислотных свойств | кислотный оксид | кислотный оксид |
Способы получения оксидов
Оксиды могут быть получены в результате различных химических реакций.
1°. При взаимодействии простых веществ (за исключением золота, платины и инертных газов) с кислородом:
S + O2 = SO2,
2 Ca + O2 = 2 CaO,
4 Li + O2 = 2 Li2O.
При горении других щелочных металлов в кислороде образуются пероксиды:
2 Na + O2 = Na2O2
или надпероксиды:
K + O2 = KO2.
Оксиды этих металлов могут быть получены при взаимодействии пероксида (или надпероксида) с соответствующим металлом:
Na2O2 + 2 Na 2 Na2O
или при термическом их разложении:
2 BaO2 2 BaO + O2.
2°. В результате горения бинарных соединений в кислороде:
а) обжиг халькогенидов:
4 FeS2 + 11 O2 = 2 Fe2O3 + 8 SO2
2 CuSe + 3 O2 = 2 CuO + 2 SeO2
4 CuFeS2 + 13 O2 = 4 CuO + 2 Fe2O3 + 8 SO2
б) горение гидридов и фосфидов.
4 PH3 + 8 O2 = P4O10 + 6 H2O Þ 4 H3PO4
CS2 + 3 O2 = CO2 + 2 SO2
2 Сa3P2 + 8 O2 = 6 CaO + P4O10.
3°. При термическом разложении солей:
a) карбонатов:
CaCO3 CaO + CO2.
Карбонаты щелочных металлов (за исключением карбоната лития) плавятся без разложения.
б) нитратов:
2 Cu(NO3)2 2 CuO + 4 NO2 + O2.
в) Если соль образована катионом металла, проявляющим переменные степени окисления и анионом кислоты, обладающей окислительными свойствами, то могут образоваться оксиды с другими степенями окисления элементов, например,
4 Fe(NO3)2 2 Fe2O3 + 8 NO2 + O2
2 FeSO4 Fe2O3 + SO2 + SO3
(NH4)2Cr2O7 N2 + 4 H2O + Cr2O3.
4°. Термическое разложение оснований и кислородсодержащих кислот приводит к образованию оксида и воды:
H2SO3 SO2 + H2O
SiO2 × x H2O SiO2 + x H2O
Ca(OH)2 CaO + H2O.
Гидроксиды щелочных металлов плавятся без разложения.
5°. Если химический элемент в своих соединениях проявляет различные степени окисления и образует несколько оксидов, то:
а) при окислении низших оксидов можно получить оксиды, в которых соответствующий элемент находится в более высокой степени окисления:
4 FeO + O2 = 2 Fe2O3
2 NO + O2 = 2 NO2
2 NO2 + O3 = N2O5 + O2
2 SO2 + O2 2 SO3,
б) и, аналогично, при восстановлении высших оксидов можно получить низшие оксиды:
Fe2O3 + CO 2 FeO + CO2.
6°. Некоторые металлы, стоящие в ряду напряжений до водорода, могут при высокой температуре вытеснять водород из воды. При этом также образуется оксид металла:
Fe + H2O FeO + H2 (t > 570°C).
7°. При нагревании солей с кислотными оксидами. Направление реакции в этом случае зависит от относительной летучести оксидов — менее летучий оксид вытесняет более летучий оксид из соли:
Na2CO3 + SiO2 Na2SiO3 + CO2
2 Ca3(PO4)2 + 6 SiO2 6 CaSiO3 + P4O10
2Na2SO4 + 2B2O3 4NaBO2 + 2SO2 + O2
4 NaNO3 + 2 Al2O3 4 NaAlO2 + 4 NO2 + O2.
8°. При взаимодействии металлов с кислотами-окислителями происходит частичное восстановление кислотообразующего элемента с образованием оксида:
Cu + 2 H2SO4, конц. = CuSO4 + SO2 + 2 H2O
Zn + 4 HNO3, конц. = Zn(NO3)2 + 2 NO2 + 2 H2O.
9°. При действии водоотнимающих веществ на кислоты или соли:
4 HNO3 + P4O10 = (HPO3)4 + 2 N2O5
2 KMnO4 + H2SO4, конц. = K2SO4 + Mn2O7 + H2O
2 KClO4 + H2SO4, конц. = K2SO4 + Cl2O7 + H2O.
10°. При взаимодействии солей слабых неустойчивых кислот с растворами сильных кислот:
Na2CO3 + 2 HCl = 2 NaCl + CO2 + H2O.
Химические свойства оксидов
Основные оксиды
К основным оксидам относятся:
– оксиды всех металлов главной подгруппы первой группы (щелочные металлы Li – Fr),
– главной подгруппы второй группы, начиная с магния (Mg – Ra) и
– оксиды переходных металлов в низших степенях окисления, например, MnO, FeO.
1°. Оксиды наиболее активных металлов (щелочных и щелочноземельных, начиная с кальция) при обычных условиях непосредственно взаимодействуют с водой, образуя гидроксиды, которые являются сильными, растворимыми в воде основаниями — щелочами, например,
BaO + H2O = Ba(OH)2;
Na2O + H2O = 2 NaOH.
2°. Основные оксиды взаимодействуют с кислотами образуя соли:
CaO + 2 HCl = CaCl2 + H2O.
3°. Также к образованию соли приводит взаимодействие их с кислотными оксидами:
Na2O(тв.) + СO2(газ) = Na2CO3
CaO(тв.) + SO3(ж.) = CaSO4
СaO(тв.) + SiO2(тв.) CaSiO3.
Кислотные оксиды
Большинство оксидов неметаллов являются кислотными оксидами (СО2 , SO3 , P4O10 и др.). Оксиды переходных металлов в высших степенях окисления проявляют преимущественно также свойства кислотных оксидов, например: CrO3 , Mn2O7 , V2O5 .
1°. Кислотные оксиды реагируют с водой с образованием соответствующих кислот:
SO3 + H2O = H2SO4
P4O10 + 6 H2O = 4 H3PO4.
Некоторые оксиды, например, SiO2 , MoO3 и др. с водой непосредственно не взаимодействуют и соответствующие им кислоты могут быть получены косвенным путем:
(x – 1) H2O + Na2SiO3 + 2 HCl = 2 NaCl + SiO2 × x H2O ¯
Na2MoO4 + 2 HCl = 2 NaCl + H2MoO4 ¯.
2°. Взаимодействие кислотных оксидов с основными оксидами приводит к образованию солей:
SO2 + Na2O = Na2SO3
SiO2 + CaO CaSiO3.
3°. Также к образованию солей ведет реакция кислотного оксида с основанием.
Cl2O + 2 NaOH = 2 NaClO + H2O.
Если кислотный оксид является ангидридом многоосновной кислоты, то в зависимости от относительных количеств основания и кислотного оксида, участвующих в реакции, возможно образование средних
Ca(OH)2 + CO2 = CaCO3 ¯ + H2O.
или кислых солей
CaCO3 ¯ + H2O + CO2 = Ca(HCO3)2 р-р.
4°. Мало летучие оксиды вытесняют летучие оксиды из солей:
Na2CO3 + SiO2 Na2SiO3 + CO2.
Амфотерные оксиды
Амфотерность (от греч. amphoteros — и тот и другой) — способность химических соединений (оксидов, гидроксидов, аминокислот) проявлять как кислотные, так и основные свойства, в зависимости от свойств второго реагента, участвующего в реакции.
Одно и то же вещество (например, ZnO), реагируя с сильной кислотой или кислотным оксидом, проявляет свойства основного оксида:
ZnO + 2 HCl = ZnCl2 + H2O
ZnO + SO3 = ZnSO4.
а при взаимодействии с сильным основанием или основным оксидом – свойства кислотного оксида:
ZnO + 2 NaOH + H2O = Na2[Zn(OH)4] (в водном растворе)
ZnO + CaO CaZnO2 (при сплавлении).
Амфотерные оксиды способны вытеснять летучие оксиды из солей:
K2CO3 + ZnO K2ZnO2 + CO2.