Реакции получения данного вещества.
Основной промышленный метод получения формальдегида — окисление метанола:
2СН3ОН + О2 → 2НСНО + 2Н2О
Окисление метанола в формальдегид проводится с использованием серебряного катализатора при температуре 650 °C и атмосферном давлении. Это хорошо освоенный технологический процесс, и 80 % формальдегида получается именно по этому методу. Недавно разработан более перспективный способ, основанный на использовании железо-молибденовых катализаторов. При этом реакция проводится при 300 °C. В обоих процессах степень превращения составляет 99 %.
Существует также промышленный способ получения формальдегида окислением метана:
СН4 + О2 → НСНО + Н2О
Процесс проводят при температуре 450 °C и давлении 1—2 МПа, в качестве катализатора применяется фосфат алюминия AlPO4.
Формальдегид получают окислит. дегидрированием метанола в паровой фазе O2 воздуха в присутствииAg при 680-720 0C (конверсия метанола 97-98%) либо в присутствииAg или серебряной сетки при 600-650 0C (конверсия 77-87%) с возвращением непрореагировавшего метанола в рецикл. Процесс можно проводить в избытке воздуха в присутствии оксидов металлов (Fe-Mo-V) при 250-400 0C (конверсия 98-99%). Формальдегид может быть получен окислением метана, пропана, бутана, этилена, гидрированием СО, однако эти методы не имеют пром. значения по экономическим причинам.
Формальдегид может быть обнаружен только по запаху. В лабораторных условиях формальдегид получают дегидрированием метанола над медью.Впробирку наливают несколько капель метанола. В пламени горелки нагревают свернутый в трубочку небольшой кусочек медной сетки или спираль из медной проволоки и быстро опускают ее в метанол. При прокаливании медь окисляется и покрывается черным налетом оксида меди, в спирте она снова восстанавливается и становится красной
H3COH + CuO → HCOH + Cu + H2O
Кроме оксида меди для получения формальдегида могут быть использованы другие знакомые окислители.К слабому раствору перманганата калия в демонстрационной пробирке добавляют 0,5 мл метанола и смесь нагревают до кипения. Появляется запах формальдегида, а фиолетовая окраска перманганата исчезает.
3H3COH + 2KMnO4 → 3HCOH + 2H2O + 2MnO2 + 2КОН.
В пробирку наливают 2-3 мл насыщенного раствора бихромата калия К2Сг2О7 и такой же объем концентрированной серной кислоты. Добавляют по каплям метанол и очень осторожно подогревают смесь (отверстие пробирки направляют в сторону!). Далее реакция идет с выделением тепла. Желтая окраска хромовой смеси исчезает, и появляется зеленая окраска сульфата хрома
3H3COH + К2Сг2О7 + 4H2SO4 -> 3HCOH + 7H2O + K2SO4 + Cr2(SO4)3
Характерные для данного вещества химические реакции.
Формальдегид вступает во все реакции, характерные для алифатических альдегидов.
Из-за низкой электронной плотности на атоме углерода формальдегид легко вступает в реакции даже со слабыминуклеофилами. Этим, в частности, объясняется тот факт, что в водных растворах формальдегид находится в гидратированной форме.
С альдегидами в присутствии сильных щелочей формальдегид вступает в так называемую перекрестную реакцию Канниццаро:
C6H5CHO + HCHO C6H5CH2OH + HCOONa
С ацетальдегидом в присутствии. Ca(OH)2 образует пентаэритрит, в паровой фазе при 285 0C - акролеин; под действием алкоголятов Al или Mg формальдегид подвергается диспропорционированию с образованием метилфомиата.
Реакция формальдегида со спиртами в присутствии сильных кислот приводит к ацеталям (формалям), с H2S - к циклич. тритиану, с HCN в присутствии щелочей - к циангидрину:
В присутствии извести формальдегид превращается в углеводы:
При взаимодействии формальдегида с NH3 образуется гексаметилентетрамин, с первичными аминами - тримеры, с вторичными - бис-(ди-алкиламино)метаны:
Соединение с подвижным атомом водорода реагируют с формальдегидом и NH3 (или аминами) по Манниха реакции. Реакция формальдегида с NH4Cl пром. способ получения метиламина:
2НСНО + NH4Cl → CH3NH2 · HCl + HCOOH
Реакция может идти дальше с образованием ди- и триметиламинов.
При действии на гексаметилентетрамин азотной кислоты образуется сильное взрывчатое вещество — гексоген.
Со спиртами в присутствии следов кислоты формальдегид легко дает соответствующие ацетали, например:
С меркаптанами и аминами формальдегид реагирует так же, как со спиртами. С гликолями, глицеринами и другими многоатомными спиртами формальдегид образует циклическиеметилали, например:
При действии щелочи на формалин получаются метиловый спирт и муравьиная кислота:
В присутствии щелочей в водном растворе может идти и другая реакция: формальдегид конденсируется, причем в числе прочих продуктов получается один из простейших сахаров, или гексоз:
Здесь происходит конденсация шести молекул формальдегида по типу альдольной конденсации, причем она, вероятно, проходит через ряд последовательных фаз
При взаимодействии формальдегида с ацетальдегидом в газовой фазе в присутствии катализаторов (окись алюминия, ацетат свинца на силикагеле и др.) образуется акролеин:
В водном растворе при большом избытке формальдегида под влиянием гидроокиси кальция конденсация с ацетальдегидом приводит к пентаэритриту:
Высшие алифатические альдегиды дают в этих условиях окси-или диоксиальдегиды (в зависимости от числа α-водородных атомов)
Эти реакции проходят, по-видимому, в несколько стадий, которые для случая получения пентаэритрита могут быть изображены следующим образом:
С кетонами формальдегид реагирует аналогично, но имеются и важные отличия. Главными из них является то, что реакцию можно обрывать на промежуточных стадиях, аналогичных приведенным выше, и получать монометилолкетоны и диметилолкетоны с метилольными группами при одном и том же углеродном атоме. Другим важным отличием является образование циклических внутренних эфиров. Так, при взаимодействии с ацетоном, вместо ожидаемого гексаметилолизопропилового спирта, получается соединение
При взаимодействии формальдегида с солями жирных кислот получаются высшие альдегиды:
Ангидриды карбоновых кислот образуют с формальдегидом сложные эфиры метиленгликоля и диметиленгликоля, например:
Реакция с хлорангидридами кислот напоминает реакцию с метанолом в присутствии НCl и приводит к образованию хлорметилового эфира соответствующей кислоты.
К олефинам в присутствии сильных кислот формальдегид присоединяется в виде метиленгликоля, образуя 1,3-гликоли, например:
С ацетиленом реакция идет с сохранением тройной связи и приводит к пропаргиловому спирту и бутиндиолу-1,4.
Области применения.
Формальдегид является одним из важнейших исходных веществ для производства пластических масс. Особенно большое значение имеют полимеры, получаемые конденсацией формальдегида с фенолами и аминосоединениями (мочевина, меламин),изделия из них широко применяются в электротехнике, радиотехнике, машиностроении, авто- и авиапромышленности и в быту.
Формальдегид применяется также для дубления кожи, для консервирования анатомических препаратов и прочего. Такое применение основано на способности формальдегида давать с белковыми веществами эластичную массу, трудно проницаемую для воды.
Директивой 76/768 ЕЭС допускается применение формальдегида в качестве консерванта в количестве до 0,1% в составе косметических средств, предназначенных для гигиены полости рта, и до 0,2% в прочих косметических препаратах. В фармакологии препараты, содержащие до 0,5% формальдегида, применяются для снижения потливости без каких-либо ограничений, и только при применении мази, содержащей 5% этого вещества, рекомендуется не наносить ее на кожу лица. Продукция должна иметь предупреждение «содержит формальдегид», если содержание формальдегида в готовой продукции превышает 0,05%. С точки зрения спектра противомикробной активности, формальдегид проявляет активность в отношении грамположительных, грамотрицательных бактерий, дрожжеподобных и плесневых грибов. В то же время формальдегид и парабены снижают противомикробные свойства в присутствии белков. Рядом с этим установлено улучшение физико-механических свойств волоса после обработки его.
Так как формальдегид в развитых странах используется исключительно в композиции косметических препаратов, не остающихся на коже, вероятность возникновения кожной реакции была рассчитана для случаев использования шампуня, содержащего в качестве консерванта 0,1% формальдегида. Расчет показал, что нежелательная кожная реакция при применении такого шампуня возникнет только у 1 человека из 75 000. При этом в действительности эта цифра будет еще менее значимой, поскольку при проведении расчетов не учитывался ряд факторов, не поддающихся точному учету, но неопровержимо снижающих эту вероятность.
Водный 40%-ный раствор, называемый формалином, применяется в медицине как дезинфицирующее средство и консервант анатомических препаратов.
Фенолоформальдегидные смолы. Отвержденные фенолоформальдегидные смолы обладают хорошими электроизоляционными и механическими свойствами. Применяются в производстве фенопластов, клеев, лакокрасочных материалов, герметиков.
Параформ - продукт полимеризации формальдегида и содержит его не менее 95 %. Это белый, рыхлый порошок с запахом формальдегида. При нагревании легко переходит в газообразное состояние. Параформ является горючим веществом. Параформ - одно из лучших дезинфицирующих средств, пригодных для дезинфекции как при неспорообразующей, так и при споровой микрофлоре, вирусах и грибах. Для дезинфекции животноводческих помещений применяют 1-4 % растворы по формальдегиду. Растворы из порошкообразного формальдегида готовят как обычно. Для получения раствора 1 % концентрации берут 1 часть сухого параформа и 99 частей воды. Параформальдегид 4 % концентрации и выше трудно растворим в воде комнатной температуры и хорошо растворяется при нагревании воды до 50-60°С, что необходимо иметь в виду во время приготовления растворов.
Пентаэритри́т (2,2-бис(гидроксиметил)пропан-1,3-диол) C(CH2OH)4 — четырёхатомный спирт. Белый кристаллический порошок. Пентаэритрит применяется в производстве алкидных смол, пентафталевых лаков и эмалей, термостабилизаторов, взрывчатого вещества тетранитропентаэритрита
Гексаметилентетрамин ((CH2)6N4, или C6H12N4), (уротропин, гексамин, англ.: Methenamine (INN), 1,3,5,7-tetraazaadamantane, hexamethylenetetramine или hexametylenetetramine). Применяется в медицине под международным непатентованным наименованием . Впервые получен российским химиком А. М. Бутлеровым в 1859 году. Образуется при взаимодействии аммиака (3.5 моль) с формальдегидом (6 моль).